AI Article Synopsis

Article Abstract

Confocal fluorescence microscopy is a well-established imaging technique capable of generating thin optical sections of biological specimens. Optical sectioning in confocal microscopy is mainly determined by the size of the pinhole, a small aperture placed in front of a point detector. In principle, imaging with a closed pinhole provides the highest degree of optical sectioning. In practice, the dramatic reduction of signal-to-noise ratio (SNR) at smaller pinhole sizes makes challenging the use of pinhole sizes significantly smaller than 1 Airy Unit (AU). Here, we introduce a simple method to "virtually" perform confocal imaging at smaller pinhole sizes without the dramatic reduction of SNR. The method is based on the sequential acquisition of multiple confocal images acquired at different pinhole aperture sizes and image processing based on a phasor analysis. The implementation is conceptually similar to separation of photons by lifetime tuning (SPLIT), a technique that exploits the phasor analysis to achieve super-resolution, and for this reason we call this method SPLIT-pinhole (SPLIT-PIN). We show with simulated data that the SPLIT-PIN image can provide improved optical sectioning (i.e., virtually smaller pinhole size) but better SNR with respect to an image obtained with closed pinhole. For instance, two images acquired at 2 and 1 AU can be combined to obtain a SPLIT-PIN image with a virtual pinhole size of 0.2 AU but with better SNR. As an example of application to biological imaging, we show that SPLIT-PIN improves confocal imaging of the apical membrane in an in vitro model of the intestinal epithelium. RESEARCH HIGHLIGHTS: We describe a method to boost the optical sectioning power of any confocal microscope. The method is based on the sequential acquisition of multiple confocal images acquired at different pinhole aperture sizes. The resulting image series is analyzed using the phasor-based separation of photons by lifetime tuning (SPLIT) algorithm. The SPLIT-pinhole (SPLIT-PIN) method produces images with improved optical sectioning but preserved SNR. This is the first time that the phasor analysis and SPLIT algorithms are used to exploit the spatial information encoded in a tunable pinhole size and to improve optical sectioning of the confocal microscope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542401PMC
http://dx.doi.org/10.1002/jemt.24178DOI Listing

Publication Analysis

Top Keywords

optical sectioning
28
sectioning confocal
12
confocal microscope
12
pinhole
12
smaller pinhole
12
pinhole sizes
12
images acquired
12
phasor analysis
12
pinhole size
12
confocal
9

Similar Publications

Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis.

Sensors (Basel)

January 2025

School of Civil Engineering Architecture and the Environment, Hubei University of Technology, Wuhan 430068, China.

The green vision rate of rural highway greening landscape is a key factor affecting the driver's visual load. Based on this, this paper uses the eye tracking method to study the visual characteristics of drivers in different green vision environments on rural highways in Xianning County. Based on the HSV color space model, this paper obtains four sections of rural highway with a green vision rate of 10~20%, green vision rate of 20~30%, green vision rate of 30~40%, and green vision rate of 40~50%.

View Article and Find Full Text PDF

To report the cosmetic, clinical, and visual outcomes of a combined surgical approach for treating a corneal/limbal dermoid using excision and a three-layered amniotic membrane graft with fibrin glue. An 18-year-old female presented with impaired vision and ocular discomfort caused by a prominent dome-shaped limbal congenital dermoid on the inferotemporal cornea, resulting in a significant aesthetic concern. A full assessment, including refraction, best-corrected visual acuity (BCVA), corneal topography, aberrometry and anterior segment OCT (AS-OCT) was conducted to plan the surgical approach.

View Article and Find Full Text PDF

: Clinically inactive corneal scars have repeatedly been shown to exhibit histological inflammation. This study aimed to evaluate the degree of histological inflammation in clinically inactive corneal scars of different origins and its correlation with graft rejection and failure following penetrating keratoplasty. : The study included 205 primary corneal explants with clinically inactive central scars resulting from herpes simplex virus keratitis (HSV, = 55), keratoconus ( = 39), mechanical trauma ( = 27), scrophulosa ( = 22) or other/unknown causes ( = 62).

View Article and Find Full Text PDF

Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils.

Molecules

January 2025

Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.

In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.

View Article and Find Full Text PDF

Objective: The diagnosis of early osteoarthritis when therapeutic interventions may be most effective at reversing cartilage degeneration presents a clinical challenge. We describe a Raman arthroscopic probe and spectral analysis that measures biomarkers reflective of the content of predominant cartilage ECM constituents-glycosaminoglycans (GAG), collagen, water-essential to cartilage function. We compare the capability of Raman-probe-derived biomarkers to predict functional properties of cartilage to quantitative MRI and histopathology assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!