Microplastics as a prevalent pollutant in water bodies have recently attracted widespread attention. To investigate the spatial and temporal distribution characteristics of microplastics in freshwater rivers and their migration patterns, the surface water, sediments, and subsidence zone of the Xiangxi River, a tributary of the Yangtze River, were sampled and analyzed in November 2020 and April 2021, respectively. The results showed that the average abundance of microplastics in the surface water of Xiangxi River was (6.64±1.32) n·L in flat water and (5.00±1.07) n·L in dry water, the average abundance of microplastics in sediments was (0.56±0.13) n·g in flat water and (0.41±0.09) n·g in dry water, and the average abundance of microplastics in the subsidence zone was (0.53±0.15) n·g in flat water and (0.68±0.18) n·gin dry water. There were significant differences in the abundance distribution of microplastics in the surface water, sediments, and subsidence zone (<0.05). In the surface water and sediments, the particle size of microplastics was mainly distributed in the range of 0.1-0.5 mm, and in the subsidence zone, it mainly ranged from 1-5 mm. The color of microplastics was mainly transparent in the surface water and subsidence zone and blue in sediments. The morphology of microplastics in the Xiangxi River basin was mainly fiber, and the materials were mainly polyethylene (PE) and polypropylene (PP). There were many factors affecting the distribution of microplastics. The analysis results showed that the abundance of microplastics in the surface water was negatively correlated with the flow rate of the water body. The abundance of microplastics in the sediment was related to the substrate type of the riverbed and negatively correlated with the substrate particle size. Combined with the microplastic abundance data of each sampling site, it was found that there was a significant migration process of microplastics in the spatial distribution of the Xiangxi River in the watershed. Along the river longitudinal direction, the longitudinal migration of microplastics in the surface water was along the river direction, and in the vertical direction, it showed the mutual migration between the water body and the subsidence zone and the water body and sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202109268 | DOI Listing |
(1) Background: Buffaloes are crucial livestock species for food and service in tropical and subtropical regions. Buffalo genetics, particularly in indigenous Chinese breeds such as the Xiangxi white buffalo (XWB), remains an intriguing area of study due to its unique traits and regional significance. (2) Methods: This investigation utilized the whole-genome sequences of twenty XWBs (newly sequenced), along with eighty published whole-genome sequences of other buffalo breeds (including Guizhou white buffalo, river buffalo, and Chinese buffalo in the Yangtze River).
View Article and Find Full Text PDFHuan Jing Ke Xue
September 2024
Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China.
Sci Total Environ
June 2024
Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils.
View Article and Find Full Text PDFSci Total Environ
May 2024
State Key Laboratory of Internet of Things for Smart City, Department of Civil and Environmental Engineering, University of Macau, Macao 999078, China.
Algal blooms have been increasingly prevalent in recent years, especially in lakes and reservoirs; their accurate prediction is essential for preserving water quality. In this study, the observed chlorophyll a (chl-a) levels were assimilated into the Environmental Fluid Dynamics Code (EFDC) of algal bloom dynamics by using a particle filter (PF), and the state variables of water quality and model parameters were simultaneously updated to achieve enhanced algal bloom predictive performance. The developed data assimilation system for algal blooms was applied to Xiangxi Bay (XXB) in the Three Gorges Reservoir (TGR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!