Development
Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain.
Published: June 2022
Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612879 | PMC |
http://dx.doi.org/10.1242/dev.186536 | DOI Listing |
Stem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Umeå University, Umeå SE-901 87, Sweden.
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.
Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.
J Med Internet Res
January 2025
Institute for Better Health, Trillium Health Partners, Mississauga, ON, Canada.
Background: Patient portals, or secure websites linked to electronic medical records, have emerged as tools to provide patients with timely access to their health information. To support the potential benefits of patient portals such as improved engagement in health care, it is essential to understand how patients and caregivers experience these portals.
Objective: This study aimed to explore patient and caregiver experiences, facilitators, and barriers to accessing and using a patient portal called MyChart during the initial stages of its implementation.
Dermatol Surg
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.
Background: From the theoretical foundations of laser and energy-based applications for the skin to the development of advanced medical devices, the field of dermatologic surgery has undergone transformative changes.
Objective: To review the scientific and clinical advancement of laser and energy-based therapies within dermatologic surgery.
Materials And Methods: A literature search was conducted to identify important scientific advancements and landmark studies on light, laser, and energy-based devices within the field of dermatologic surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.