Finite element analysis of shank and ankle with different boot collar heights in parachuting landing on inversion ground surface.

Comput Methods Biomech Biomed Engin

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Published: July 2022

This study aimed to the biomechanics of the foot-ankle-shank complex with different boots collar heights in parachuting landing on inversion ground surface. A finite element model including tibia, fibula, ankle, foot and parachuting boot was developed. Three collar heights (low, medium, high) of the parachuting boot were simulated. Von-Mises stress, ankle inversion angle, ligament force and bone displacement were analyzed. Compared with that of the high and low collar heights, boots with medium collar height produced the lowest peak stress on the tibia and the articular cartilage of the subtalar joint. In addition, the medium collar height can better control the ankle inversion and minimize the tensile forces on the lateral ankle ligaments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2021.1908542DOI Listing

Publication Analysis

Top Keywords

collar heights
16
finite element
8
heights parachuting
8
parachuting landing
8
landing inversion
8
inversion ground
8
ground surface
8
parachuting boot
8
ankle inversion
8
medium collar
8

Similar Publications

Transducers used in acoustic logging while drilling (ALWD) must be mounted on a drill collar, and their radiation performance is dependent on the employed mounting method. Herein, the complex transmitting voltage response of a while-drilling (WD) monopole acoustic source was calculated through finite-element harmonic-response analysis. Subsequently, the acoustic pressure waveform radiated by the source driven by a half-sine excitation voltage signal was calculated using the complex transmitting voltage response.

View Article and Find Full Text PDF

Background And Objectives: Plant growth-promoting rhizobacteria (PGPR) with a diverse set of traits can improve crop yield in agriculture. The current study aimed to evaluate the potential of multi-trait PGPR isolates as inoculants for maize growth.

Materials And Methods: In this study, 23 bacterial isolates were initially screened from maize plant rhizosphere.

View Article and Find Full Text PDF

Sesame cultivation was until recently restricted to the northwestern part of Benin. The yield is relatively low, as there are no improved varieties introduced and widely adopted so far. This study aimed to assess the molecular diversity, genetic differentiation, and the agronomic performance of a collection of local cultivars and introduced lines of sesame from China.

View Article and Find Full Text PDF

Background: Nutrition literacy is an important component of health and healthy eating behaviors. The aim of this study was to determine the nutrition literacy (NL) status of white-collar employees and its relationship with adherence to the Mediterranean diet, anthropometric measurements, and lifestyle behaviors, including eating habits, dietary intake, and physical activity level.

Methods: This cross-sectional study was conducted with 3459 white-collar employees aged 18-65 who lived in Türkiye.

View Article and Find Full Text PDF

While not essential for most plants, sodium (Na) can partially substitute for potassium (K) in some metabolic functions. Thus, understanding the mechanisms underlying K and Na uptake, transport, utilization, and ion replacement is crucial to sustain forest production. A pot experiment was designed with 6 K/Na ratios (100/0, 85/15, 70/30, 55/45, 40/60, and 0/0%) and two water conditions (well-watered, W+; and water-stressed, W-) on two Eucalyptus species with contrasting drought tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!