Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397133 | PMC |
http://dx.doi.org/10.1002/bies.202100279 | DOI Listing |
ISME J
January 2025
Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.
The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.
View Article and Find Full Text PDFNat Rev Neurosci
December 2024
Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic.
G3 (Bethesda)
December 2024
University of Georgia, Department of Entomology, 120 Cedar St, Athens, GA, USA 30602.
Selfish genetic elements subvert the normal rules of inheritance to unfairly propagate themselves, often at the expense of other genomic elements and the fitness of individuals carrying them. Social life provides diverse avenues for the propagation of such elements. In the fire ant Solenopsis invicta, polymorphic social organization is controlled by a social chromosome, one variant of which (Sb) enhances its own transmission in polygyne colonies through effects on caste development and queen acceptance by workers.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!