Multifunctional core@shell nanoparticles have been synthesized in this paper through 3 stages: NiFeO nanoparticles by microwave irradiation using leaf extract as a fuel, core@shell NiFeO@TiO nanoparticles by sol-gel, and NiFeO@TiO@rGO by sol-gel using preprepared reduced graphene oxide obtained by modified Hummer's method. XRD analysis confirmed the presence of both cubic NiFeO spinel and tetragonal TiO rutile phases, while Raman spectroscopy analysis displays both and bands ( /  = 1.04) associated with rGO. Morphological observations by HRTEM reveal a core-shell nanostructure formed by NiFeO core as confirmed by SAED with subsequent thin layers of TiO and rGO. Magnetic measurements show a ferromagnetic behavior, where the saturation magnetization drops drastically from 45 emu/g for NiFeO to 15 emu/g after TiO and rGO nonmagnetic bilayers coating. The as-fabricated multifunctional core@shell nanostructures demonstrate tunable self-heating characteristics: rise of temperature and specific absorption rate in the range of Δ = 3-10°C and SAR = 3-58 W/g, respectively. This effectiveness is much close to the threshold temperature of hyperthermia (45°C), and the zones of inhibition show the better effective antibacterial activity of NTG against various Gram-positive and Gram-negative bacterial strains besides simultaneous good efficient, stable, and removable sonophotocatalyst toward the TC degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174006PMC
http://dx.doi.org/10.1155/2022/4805490DOI Listing

Publication Analysis

Top Keywords

multifunctional core@shell
8
tio rgo
8
nifeo
5
multifunctional core-shell
4
core-shell nifeo
4
nifeo shield
4
shield tio/rgo
4
tio/rgo nanostructures
4
nanostructures biomedical
4
biomedical environmental
4

Similar Publications

Design, synthesis, and characterization of an Ag-Bi-S-based multifunctional nanotheranostic platform.

J Mater Chem B

December 2024

College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China.

This paper reports an Ag-Bi-S-based nanotheranostic platform with an ingeniously designed heterostructure, an appropriate size, and good imaging and therapy performances. By comparing the fluorescence property and Bi element content, the optimal heterostructure was demonstrated to be AgS/BiS core/shell. The hydrophilic AgS/BiS-PEG nanocrystals with hydrodynamic diameter of 37.

View Article and Find Full Text PDF

High-performance delivery capsules co-assembled from lignin and chitosan with avermectin for sustainable pest management.

Int J Biol Macromol

December 2024

Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China. Electronic address:

Inexpensive biomass materials hold great potential for the development of green delivery systems aimed at improving the extremely low utilization efficiency of pesticides. However, current systems face challenges in achieving both high encapsulation rates and drug loading capacities. This study introduces a novel method using chitosan (CS) and sodium lignosulfonate (SL) to co-assemble with avermectin (AVM), a widely used hydrophobic pesticide, forming AVM-CS-SL micro-nano capsules.

View Article and Find Full Text PDF

Background: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.

Results: Therefore, to overcome these obstacles multifunctional core-shell BMS@PtAu nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. PtAu clusters are released from BMS@PtAu NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous HO to generate O as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose.

View Article and Find Full Text PDF

Biological macromolecules such as polysaccharides and proteins, due to their excellent biocompatibility and biodegradability, are ideal for promoting Skin Tissue Engineering (STE) both in vitro and in vivo. In this study, a core-shell electrospun scaffold was fabricated using the coaxial electrospinning method, with Polyurethane (PU) forming the shell and a mixture of Starch (ST), Propolis Extract (PE), and Hyaluronic Acid (HA) forming the core. The scaffold's morphology was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), confirming the successful formation of a well-defined core-shell structure.

View Article and Find Full Text PDF

Multifunctional layered microneedle patches enable transdermal angiogenesis and immunomodulation for scarless healing of thermal burn injuries.

Mater Today Bio

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Thermal burn injuries induce substantial alterations in the immune compositions and anatomical structures in the skin, which are characterized by strong inflammatory responses and thick eschar formation on the wound surface. These traits challenge current treatment paradigms due to insufficient drug penetration into affected tissues and the unsatisfactory wound regeneration. Herein, we report a layered microneedle (MN) patch for addressing these challenges in burn injury healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!