Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612832PMC
http://dx.doi.org/10.1016/j.foreco.2020.118408DOI Listing

Publication Analysis

Top Keywords

rotation length
24
bark beetle
12
effects srl
12
collateral effects
12
reducing rotation
8
increasing disturbances
8
central europe
8
disturbance regimes
8
rotation
8
shortened rotation
8

Similar Publications

An alternative fixation for all mild and moderate hallux valgus cases enabling intraoperative readjustment.

J Orthop Surg Res

January 2025

Department of Orthopaedics and Traumatology, Adana City Training and Research Hospital, University of Health Sciences, Adana, Turkey.

Background: The development of a cost-effective and easily applicable fixation method to address all components of hallux valgus (HV) surgery is of great importance to the field. This study aims to assess the clinical efficacy of an  alternative fixation method that combines the advantages aspects of commonly used distal osteotomy techniques and evaluate its level of applicability in the treatment of mild and moderate HV cases.

Methods: The retrospectively designed study was conducted at Adana City Training and Research Hospital, Adana, Türkiye.

View Article and Find Full Text PDF

The present study analyzed the kinematic changes under fatigue in highly trained adolescent swimmers during a 50-m all-out front cwal test. Twenty-four girls and fourteen boys aged 12-13 participated in the study. The movement of the hip rim was analyzed using a specialized inertial device equipped with a triaxial gyroscope and accelerometer to measure changes in angular velocity and acceleration.

View Article and Find Full Text PDF

Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.

View Article and Find Full Text PDF

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Introduction: Aseptic recalcitrant nonunion (ARNU) of the femur and tibia is an entity in which the absence of bony union, misalignment, and limb length discrepancies (LLD) coexist. Currently, the management of these cases lacks consensus. This study aimed to describe the bone union rate and deformity correction outcomes in patients with ARNU of the femur or tibia treated with the Induced Membrane Technique (IMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!