Amongst chemical and physical techniques, the biosynthesis method of metal nanoparticles has received the interest of many researchers owing to its environmental safety, simplicity and inexpensiveness. Manganese oxide nanoparticles (MnO NPs) were successfully synthesised using green tea extract as the reducing agent and characterised by UV-Vis spectroscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. The shape and size of the MnO NPs were obtained by scanning electron microscopy. The size of the MnO NPs was 20-30 nm. The MnO NPs exhibited strong antibacterial activity against pathogenic bacteria, namely,  and , with inhibition zones of 12, 14 and 18 mm, respectively. Moreover, the minimum inhibitory concentration (MIC) of the MnO NPs was 12.5 U/mL as determined by resazurin microtitre assay. The activities of some antibiotics remarkably increased when combined with MnO NPs (at MIC).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171442PMC
http://dx.doi.org/10.1016/j.btre.2022.e00729DOI Listing

Publication Analysis

Top Keywords

mno nps
24
antibacterial activity
8
manganese oxide
8
oxide nanoparticles
8
green tea
8
tea extract
8
size mno
8
mno
6
nps
6
biosynthesis antibacterial
4

Similar Publications

Mesoporous polydopamine composite nanoparticles for multimodal therapy based on disrupting the redox homeostasis within tumor cells.

J Colloid Interface Sci

December 2024

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:

Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).

View Article and Find Full Text PDF

Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.

View Article and Find Full Text PDF

Renal Clearable Chiral Manganese Oxide Supraparticles for In Vivo Detection of Metalloproteinase-9 in Early Cancer Diagnosis.

Adv Mater

December 2024

State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.

In this study, polypeptide TGGGPLGVARGKGGC-induced chiral manganese dioxide supraparticles (MnO SPs) are prepared for sensitive quantification of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo. The results show that L-type manganese dioxide supraparticles (L-MnO SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin-associated protein) than D-type manganese dioxide supraparticles (D-MnO SPs) to accumulate at the tumor site after surface modification of the internalizing arginine-glycine-aspartic acid (iRGD) ligand, specifically reacting with the MMP-9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, L-MnO facilitates the quantification of MMP-9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h.

View Article and Find Full Text PDF

Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO nanoparticles.

Discov Nano

December 2024

Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.

Article Synopsis
  • The study introduces a quick and eco-friendly method to create manganese oxide (MnO) nanoparticles using Ashwagandha extract, with noticeable color change signaling synthesis.
  • Various analytical techniques confirmed the formation and properties of the nanoparticles, which demonstrated high photocatalytic efficiency in breaking down pollutants when exposed to sunlight.
  • The process is simple, does not require harmful chemicals, and has potential applications in wastewater treatment, promoting the development of sustainable nanomaterials.
View Article and Find Full Text PDF

Capsaicin-induced Ca overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy.

Nanoscale

December 2024

Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.

As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!