A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of a new antimicrobial agent production (RSMM C3) by using metagenomics approaches from Egyptian marine biota. | LitMetric

Evaluation of a new antimicrobial agent production (RSMM C3) by using metagenomics approaches from Egyptian marine biota.

Biotechnol Rep (Amst)

Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt.

Published: June 2022

Diseases and epidemics in the current days need new types of antibiotics in order to be able to eliminate them. The goal of this research is to use metagenomics to identify isolated utilitarian gene (s) as antimicrobial specialists. Collection of diverse locations from sea sediment samples from Alexandria and extraction of total DNA, restriction enzyme fragmentation, cloning into pUC19 vector, and expression of the isolated gene(s) in DH5 were all part of the process. Characterization of Antimicrobial agent was done for the best clone for antimicrobial agent's production to detect efficiency, optimum pH, thermal stability, pH stability, effect of different compounds on antimicrobial activity, and residual activity of product after preservation in room temperature. Amino acid sequence of RSMM C3 gene (1250 bp) was 72% identity with sp. The ideal temperature level of the RSMM C3 antimicrobial agent production was 36 °C. The antimicrobial agent RSMM C3's stability was stable at -20 °Celsius for up to two months without thawing. The antibacterial agent RSMM C3 was stable at 4 °C for 14 days without loss in activity. The ideal pH level of the RSMM C3 antimicrobial agent was 6. Remain activity was gradually decreased at pH 5, 6, 6.5 and 7 (86.1, 96.9, 97.2 and 94.9%, respectively). On the other hand, residual activity was (92 and 84%) at (pH 7.5 and 8) for 8 days. The tested antimicrobial RSMM C3 was stable against 1 mM of different compounds (DMSO, Glycerol, NaCl, CaCl, MgCl, ZnCl, FeSO, MnSO and CuSO). The research provides for the Metagenomics technique that has the ability for the production of novel antimicrobial agents produced by clone RSMM C3 which has a wide spectrum activity towards different microorganisms comparing to other antibiotics as Ampicillin and Tetracycline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171440PMC
http://dx.doi.org/10.1016/j.btre.2022.e00706DOI Listing

Publication Analysis

Top Keywords

antimicrobial agent
20
antimicrobial
9
agent production
8
rsmm
8
residual activity
8
level rsmm
8
rsmm antimicrobial
8
agent rsmm
8
rsmm stable
8
agent
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!