Biomolecule detection based on the localized surface plasmon resonance (LSPR) phenomenon has advantages in label-free detection, good sensitivity, and measurement simplicity and reproducibility. However, in order to ultimately be used for actual diagnosis, the ability to detect trace amounts of biomarkers is necessary, which requires the development of signal enhancement strategies that enable ultrasensitive detection. In this paper, we provide a straightforward and efficient route to boost LSPR sensitivity based on multiple sample washings. We found that repeated washing and drying cycles lead to a shift in the LSPR peak in a concentration-dependent manner, where this process drives the accumulation of a precipitate, formed by an enzyme reaction with target specificity, in the sample's LSPR active plasmonic nano-valley structure. Results show that the washing and drying process leads to a signal enhancement of more 200 times compared to a sensor with only enzyme-based amplification. To maximize this effect, optimization of the plasmonic nanostructure was also carried out to finally achieve atto-molar detection of miRNA with a distinguishable LSPR peak shift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126672PMC
http://dx.doi.org/10.1039/d2ra01331bDOI Listing

Publication Analysis

Top Keywords

signal enhancement
8
washing drying
8
lspr peak
8
lspr
5
enhanced detection
4
detection sensitivity
4
sensitivity enzyme-induced
4
enzyme-induced precipitate
4
precipitate accumulation
4
accumulation lspr-active
4

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

The use of conventional contrast agents in computed tomography (CT) and magnetic resonance (MR) imaging is often limited in patients with chronic kidney disease (CKD) due to potential nephrotoxicity. Ferumoxytol, originally developed for iron supplementation, has emerged as a promising alternative MR contrast agent that is safer for patients with CKD. This study aims to present our center's experience with ferumoxytol as a contrast agent in CKD patients.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!