We introduce a definition of 'best' currents to apply to an electrode array on the surface of a body in order to distinguish between the conductivity inside the body and a conjectured conductivity. Using these 'best' currents, we illustrate with a simple example the general fact that a single current applied between a pair of electrodes, loses its ability to distinguish between different conductivities as the size of the region over which the current is applied goes to zero. We next introduce approximations to the best currents on systems having L electrodes, and calculate the ability of these systems to distinguish between conductivities as L goes to infinity and the electrode size goes to zero. We conclude with a simple example that illustrates a process for producing the 'best' currents without a previous knowledge of what is inside the body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0143-0815/8/4a/005 | DOI Listing |
Front Pediatr
December 2024
Paediatrics and Paediatric Respirology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
Ataxia-telangiectasia (A-T) is an ultrarare autosomal recessive disorder and occurs in all racial and ethnic backgrounds. Clinically, children and young people with A-T are affected by sinopulmonary infections, neurological deterioration with concomitant bulbar dysfunction, increased sensitivity to ionizing radiation, immunodeficiency, a decline in lung function, chronic liver disease, endocrine abnormalities, cutaneous and deep-organ granulomatosis, and early death. Pulmonary complications become more frequent in the second decade of life and are a leading cause of death in individuals with A-T.
View Article and Find Full Text PDFMany of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.
View Article and Find Full Text PDFArrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including , and Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors.
View Article and Find Full Text PDFBackground: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.
Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.
Eur J Haematol
January 2025
Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy.
FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!