The positive effects of various probiotic foods on weight control, intestinal microbiota, and biochemical markers have been proven by various studies. However, there is no study on such effects of tarhana and kefir + tarhana consumption, a type of Turkish food rich in spp., , , and . This study aimed to determine the changes caused by regular consumption of kefir and/or tarhana for 6 months on weight gain, intestinal microbiota, and biochemical parameters in Wistar albino rats with obese microbiota. Therefore, thirty-five rats were fed with five different methods of oral gavage ( = 7 per group): Normal Diet Control (NDC), High Fat Diet Control (HFDC), 6 mL/kg Kefir + High Fat Diet (Kefir + HFD), 0.2 g/kg Tarhana + High Fat Diet (Tarhana + HFD), and 6 mL/kg Kefir + 0.2 g/kg Tarhana + High Fat Diet (Kefir + Tarhana + HFD). Normality tests were evaluated using the One-Sample Kolmogorov test and Histogram graph. Multiple group comparisons were performed using one-way ANOVA and Tukey's HSD post hoc test, and the statistical significances were indicated by different letters ( < 0.05). Comparisons by gender were performed using the independent samples -test. Kefir consumption was more effective on decreasing weight gain. Obese microbiota significantly increased blood glucose level and decreased red blood cell (RBC), hematocrit (HCT), hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelets (PLT), and white blood cells. RBC and HCT values in Kefir + HFD, PLT value in Tarhana + HFD, and mean corpuscular volume (MCV), MCH, and MCHC values in Kefir + Tarhana + HFD were higher than those of other groups ( < 0.05). Kefir + tarhana consumption significantly showed an increase in blood glucose. Kefir and/or tarhana induced the abundance of and blocked the abundances of total coliform bacteria and ( < 0.05). We demonstrated that kefir was effective in decreasing weight gain, and all dietary interventions induced positive alterations on biochemical findings and intestinal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159110 | PMC |
http://dx.doi.org/10.1155/2022/4569100 | DOI Listing |
Front Cell Infect Microbiol
January 2025
College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands.
Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota.
View Article and Find Full Text PDFCancer Med
February 2025
Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Background: The management of acute myeloid leukemia (AML) is hindered by treatment-related toxicities and complications, particularly cytopenia, which remains a leading cause of mortality. Given the pivotal role of the gut microbiota (GM) in hemopoiesis and immune regulation, we investigated its impact on hematologic recovery during AML induction therapy.
Methods: We profiled the GM of 27 newly diagnosed adult AML patients using 16S rRNA amplicon sequencing and correlated it with key clinical parameters before and after induction therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!