On-board system fault knowledge base (KB) is a collection of fault causes, maintenance methods, and interrelationships among on-board modules and components of high-speed railways, which plays a crucial role in knowledge-driven dynamic operation and maintenance (O&M) decisions for on-board systems. To solve the problem of multi-source heterogeneity of on-board system O&M data, an entity matching (EM) approach using the BERT model and semi-supervised incremental learning is proposed. The heterogeneous knowledge fusion task is formulated as a pairwise binary classification task of entities in the knowledge units. Firstly, the deep semantic features of fault knowledge units are obtained by BERT. We also investigate the effectiveness of knowledge unit features extracted from different hidden layers of the model on heterogeneous knowledge fusion during model fine-tuning. To further improve the utilization of unlabeled test samples, a semi-supervised incremental learning strategy based on pseudo labels is devised. By selecting entity pairs with high confidence to generate pseudo labels, the label sample set is expanded to realize incremental learning and enhance the knowledge fusion ability of the model. Furthermore, the model's robustness is strengthened by embedding-based adversarial training in the fine-tuning stage. Based on the on-board system's O&M data, this paper constructs the fault KB and compares the model with other solutions developed for related matching tasks, which verifies the effectiveness of this model in the heterogeneous knowledge fusion task of the on-board system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173926PMC
http://dx.doi.org/10.1155/2022/9948218DOI Listing

Publication Analysis

Top Keywords

knowledge fusion
20
incremental learning
16
heterogeneous knowledge
16
on-board system
16
semi-supervised incremental
12
knowledge
9
bert model
8
model semi-supervised
8
fault knowledge
8
o&m data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!