A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lightweight-Convolutional Neural Network for Apple Leaf Disease Identification. | LitMetric

As a widely consumed fruit worldwide, it is extremely important to prevent and control disease in apple trees. In this research, we designed convolutional neural networks (CNNs) for five diseases that affect apple tree leaves based on the AlexNet model. First, the coarse-grained features of the disease are extracted in the model using dilated convolution, which helps to maintain a large receptive field while reducing the number of parameters. The parallel convolution module is added to extract leaf disease features at multiple scales. Subsequently, the series 3 × 3 convolutions shortcut connection allows the model to deal with additional nonlinearities. Further, the attention mechanism is added to all aggregated output modules to better fit channel features and reduce the impact of a complex background on the model performance. Finally, the two fully connected layers are replaced by global pooling to reduce the number of model parameters, to ensure that the features are not lost. The final recognition accuracy of the model is 97.36%, and the size of the model is 5.87 MB. In comparison with five other models, our model design is reasonable and has good robustness; further, the results show that the proposed model is lightweight and can identify apple leaf diseases with high accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171387PMC
http://dx.doi.org/10.3389/fpls.2022.831219DOI Listing

Publication Analysis

Top Keywords

model
9
apple leaf
8
leaf disease
8
lightweight-convolutional neural
4
neural network
4
apple
4
network apple
4
disease
4
disease identification
4
identification consumed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!