Thermally induced optical reflection of sound (THORS) provides a means to manipulate sound waves without the need for traditional acoustically engineered structures. By photothermally exciting a medium, with infrared light, a barrier can be formed due to abrupt changes in compressibility of the excited medium. Discovery and initial characterization of the THORS phenomenon utilized air saturated with ethanol vapor as the absorbing medium and a CO laser, operating at 9.6 µm, as the excitation source to achieve acoustic reflection efficiencies of 25-30% of the incident wave. In this work, we demonstrate for the first time, the ability to generate THORS barriers in ambient air (i.e., without the need for ethanol vapor). Employing atmospheric water vapor as the absorbing medium and a modulated, multiline carbon monoxide laser, operating at 5.5 ± 0.25 µm, THORS barriers capable of acoustic and ultrasonic reflection-suppression efficiencies greater than 70% are readily generated. To achieve these significant reflection-suppression efficiencies, the temporal dynamics of THORS barriers in ambient air were characterized using 300 kHz ultrasonic pulses incident on the barriers, revealing three different operational regimes. In the first regime, a single laser pulse generates a transient THORS barrier that lasts tens of milliseconds and exhibits minimal acoustic reflectivity. In the second regime, multiple laser pulses interact with the water vapor prior to complete relaxation of the THORS barrier from the previous excitation pulse, resulting in an additive response and reflectivity/suppression efficiencies as great as 72%. Finally, in the third regime, non-modulated continuous wave (CW) excitation of the water vapor occurs resulting in no measurable acoustic reflectivity/suppression from the THORS barrier. This work characterizes these different regimes and the optimal modulation timing to generate efficient continuous acoustic barriers using THORS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00037028221109238 | DOI Listing |
Environ Res
January 2025
Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. Electronic address:
Background: Exposure to residential greenness has been linked with improved sleep duration; however, longitudinal evidence is limited, and the potential mediating effect of ambient fine particulate matter (PM) has yet to be assessed.
Methods: We obtained data for 19,567 participants across seven counties in a prospective cohort in Ningbo, China. Greenness was estimated using Normalized Difference Vegetation Index (NDVI) within 250-m, 500-m and 1000-m buffer zones, while yearly average PM concentrations were measured using validated land-use regression models, both based on individual residential addresses.
Ecotoxicol Environ Saf
January 2025
Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia.
Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.
A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Univeristy of Washington School of Public Health, Seattle, WA, USA.
Background: Long-term exposure to ambient air pollution-including fine particulate matter <2.5µm in diameter (PM)-has previously been associated with incident dementia. As climate change drives longer and more intense wildfire seasons, exposure to PM produced by wildfires may be a unique and increasingly important risk factor for dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
Background: Long-term exposure to ambient air pollution has recently been highlighted as a modifiable risk factor for dementia. However, the mechanisms underlying these associations still remain unclear. The goal of this study was to investigate the associations between air pollution and neuroimaging correlates in a sample of middle-aged and older adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!