Pulse Oximeter Performance during Rapid Desaturation.

Sensors (Basel)

Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic.

Published: June 2022

The reliability of pulse oximetry is crucial, especially in cases of rapid changes in body oxygenation. In order to evaluate the performance of pulse oximeters during rapidly developing short periods of concurrent hypoxemia and hypercapnia, 13 healthy volunteers underwent 3 breathing phases during outdoor experiments (39 phases in total), monitored simultaneously by five different pulse oximeters. A significant incongruity in values displayed by the tested pulse oximeters was observed, even when the accuracy declared by the manufacturers were considered. In 28.2% of breathing phases, the five used devices did not show any congruent values. The longest uninterrupted congruent period formed 74.4% of total recorded time. Moreover, the congruent periods were rarely observed during the critical desaturation phase of the experiment. The time difference between the moments when the first and the last pulse oximeter showed the typical study endpoint values of 85% and 75% was 32.1 ± 23.6 s and 24.7 ± 19.3 s, respectively. These results suggest that might not be a reliable parameter as a study endpoint, or more importantly as a safety limit in outdoor experiments. In the design of future studies, more parameters and continuous clinical assessment should be included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185462PMC
http://dx.doi.org/10.3390/s22114236DOI Listing

Publication Analysis

Top Keywords

pulse oximeters
12
pulse oximeter
8
breathing phases
8
outdoor experiments
8
study endpoint
8
pulse
6
oximeter performance
4
performance rapid
4
rapid desaturation
4
desaturation reliability
4

Similar Publications

Background: Pain management in pediatric patients during dental procedures is very important. Here, the traditional method of behavior management is compared with novel methods.

Aim: To compare and determine the effectiveness of an external cooling and vibrating device vs counterstimulation with the conventional technique in reducing the fear and discomfort of pediatric dental patients aged 5-7 years during inferior alveolar nerve block (IANB).

View Article and Find Full Text PDF

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO measurement in consumer wearables that utilise reflectance pulse oximeters.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

Pulse oximetry at two sensor placement sites in conscious foals.

Acta Vet Scand

January 2025

Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014, Helsinki, Finland.

Background: Pulse oximetry has not been thoroughly evaluated for assessment of oxygenation in conscious foals. Compared with invasive arterial blood sampling, it is a painless and non-invasive method for real-time monitoring of blood oxygen saturation. The aim of this prospective clinical study was to evaluate the usability, validity, and reliability of pulse oximetry at two measuring sites (lip and caudal abdominal skin fold) for blood oxygen saturation measurement in conscious foals with and without respiratory compromise.

View Article and Find Full Text PDF

A Wearable Prototype Measuring PtcCO and SpO.

IEEE Biomed Circuits Syst Conf

October 2024

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA.

The proper functioning of the respiratory system is evaluated by monitoring the exchange of blood oxygen and carbon dioxide. While wearable devices for monitoring both blood oxygen and carbon dioxide are emerging, wearable carbon dioxide monitors remain relatively rare. This paper introduces a novel wearable prototype that integrates the measurement of transcutaneous carbon dioxide and peripheral blood oxygen saturation on a miniaturized custom-designed printed circuit board.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!