Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning.

Sensors (Basel)

Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Published: May 2022

The growth of the Internet has expanded the amount of data expressed by users across multiple platforms. The availability of these different worldviews and individuals' emotions empowers sentiment analysis. However, sentiment analysis becomes even more challenging due to a scarcity of standardized labeled data in the Bangla NLP domain. The majority of the existing Bangla research has relied on models of deep learning that significantly focus on context-independent word embeddings, such as Word2Vec, GloVe, and fastText, in which each word has a fixed representation irrespective of its context. Meanwhile, context-based pre-trained language models such as BERT have recently revolutionized the state of natural language processing. In this work, we utilized BERT's transfer learning ability to a deep integrated model CNN-BiLSTM for enhanced performance of decision-making in sentiment analysis. In addition, we also introduced the ability of transfer learning to classical machine learning algorithms for the performance comparison of CNN-BiLSTM. Additionally, we explore various word embedding techniques, such as Word2Vec, GloVe, and fastText, and compare their performance to the BERT transfer learning strategy. As a result, we have shown a state-of-the-art binary classification performance for Bangla sentiment analysis that significantly outperforms all embedding and algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185586PMC
http://dx.doi.org/10.3390/s22114157DOI Listing

Publication Analysis

Top Keywords

sentiment analysis
20
transfer learning
16
word2vec glove
8
glove fasttext
8
sentiment
5
analysis
5
learning
5
transfer
4
learning sentiment
4
analysis bert
4

Similar Publications

An instructional emperor pigeon optimization (IEPO) based DeepEnrollNet for university student enrolment prediction and retention recommendation.

Sci Rep

December 2024

Department of Information Systems, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.

Academic institutions face increasing challenges in predicting student enrollment and managing retention. A comprehensive strategy is required to track student progress, predict future course demand, and prevent student churn across various disciplines. Institutions need an effective method to predict student enrollment while addressing potential churn.

View Article and Find Full Text PDF

Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009.

View Article and Find Full Text PDF

Increasing awareness of climate change and its potential consequences on financial markets has led to interest in the impact of climate risk on stock returns and portfolio composition, but few studies have focused on perceived climate risk pricing. This study is the first to introduce perceived climate risk as an additional factor in asset pricing models. The perceived climate risk is measured based on the climate change sentiment of the Twitter dataset with 16 million unique tweets in the years 2010-2019.

View Article and Find Full Text PDF

Although COVID-19 has been declared endemic in South Korea, there are economic and psychosocial after-effects. One of these is the prevalence of depression. Depressed adolescents and young adults struggle with insecurity, loneliness, and lack of confidence due to the life limitations imposed during the pandemic.

View Article and Find Full Text PDF

During the Russia-Ukraine war, Ukrainian President Volodymyr Zelenskyy has strategically used social media to appeal for international support. This reflects a broader trend of political figures relying on digital platforms to shape public opinion and influence global narratives during crises. This work uses three main analysis methods, content, sentiment and social network analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!