Heuristic Routing Algorithms for Time-Sensitive Networks in Smart Factories.

Sensors (Basel)

School of Computer Science and Engineering, Northeastern University, Shenyang 110167, China.

Published: May 2022

Over recent years, traditional manufacturing factories have been accelerating their transformation and upgrade toward smart factories, which are an important concept within Industry 4.0. As a key communication technology in the industrial internet architecture, time-sensitive networks (TSNs) can break through communication barriers between subsystems within smart factories and form a common network for various network flows. Traditional routing algorithms are not applicable for this novel type of network, as they cause unnecessary congestion and latency. Therefore, this study examined the classification of TSN flows in smart factories, converted the routing problem into two graphical problems, and proposed two heuristic optimization algorithms, namely GATTRP and AACO, to find the optimal solution. The experiments showed that the algorithms proposed in this paper could provide a more reasonable routing arrangement for various TSN flows with different time sensitivities. The algorithms could effectively reduce the overall delay by up to 74% and 41%, respectively, with promising operating performances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185460PMC
http://dx.doi.org/10.3390/s22114153DOI Listing

Publication Analysis

Top Keywords

smart factories
16
routing algorithms
8
time-sensitive networks
8
tsn flows
8
algorithms
5
factories
5
heuristic routing
4
algorithms time-sensitive
4
smart
4
networks smart
4

Similar Publications

Scalable and energy-efficient task allocation in industry 4.0: Leveraging distributed auction and IBPSO.

PLoS One

January 2025

Department of Construction and Quality Management, School of Science and Technology, Hong Kong Metropolitan University, Homantin Kowloon, Hong Kong SAR, China.

Industry 4.0 has transformed manufacturing with the integration of cutting-edge technology, posing crucial issues in the efficient task assignment to multi-tasking robots within smart factories. The paper outlines a unique method of decentralizing auctions to handle basic tasks.

View Article and Find Full Text PDF

Improving energy efficiency is crucial for smart factories that want to meet sustainability goals and operational excellence. This study introduces a novel decision-making framework to optimize energy efficiency in smart manufacturing environments, integrating Intuitionistic Fuzzy Sets (IFS) with Multi-Criteria Decision-Making (MCDM) techniques. The proposed approach addresses key challenges, including reducing carbon footprints, managing operating costs, and adhering to stringent environmental standards.

View Article and Find Full Text PDF

Importance: The integration of patient-reported outcome (PRO) assessments in cardiovascular care has encountered considerable obstacles despite their established clinical relevance.

Objective: To assess the impact of a physician- and patient-friendly electronic PRO (ePRO) monitoring system on the quality of cardiovascular care in clinical practice.

Design, Setting, And Participants: This open-label, multicenter, pilot randomized clinical trial was phase 2 of a multiphase study that was conducted from October 2022 to October 2023 and focused on the implementation and evaluation of an ePRO monitoring system in outpatient clinics in Japan.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for medical applications.

Microb Cell Fact

January 2025

Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.

Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.

Main Text: In this review, we scrutinize the main applications of engineered S.

View Article and Find Full Text PDF

Structural characterization of pyruvic oxime dioxygenase, a key enzyme in heterotrophic nitrification.

J Bacteriol

January 2025

Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.

Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!