The success rate of the electrosurgical high-frequency electric field welding technique lies in reasonable control of the welding time. However, the final impedance value used to control the welding time varies due to differences in tissue size and the welding method during the welding process. This study aims to introduce a new reference indicator not limited by impedance size from dynamic impedance to achieve an adequate weld strength with minimal thermal damage, providing feedback on the tissue welding effect in medical power supplies. End-to-end anastomosis experiments were conducted with porcine small intestine tissue under seven levels of compression pressure. The dynamic impedance changes were analyzed, combined with compression pressure, temperature, moisture, and collagen during welding. The welding process was divided into three stages according to the dynamic impedance, with impedance decreasing in Period Ⅰ and impedance increasing in Period Ⅲ. Period Ⅲ was the key to high-strength connections due to water evaporation and collagen reorganization. The dynamic impedance ratio is defined as the final impedance divided by the minimum impedance, and successful welding would be predicted when detecting the dynamic impedance ratio over 4 (n = 70, p < 0.001). Dynamic impedance monitoring can be used as a macroscopic real-time prediction of the anastomosis effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185443 | PMC |
http://dx.doi.org/10.3390/s22114101 | DOI Listing |
Bioelectromagnetics
January 2025
Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico.
Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Architecture and Civil Engineering, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland.
The production of consumer electronics using electrically conductive materials is a dynamically developing sector of the economy. E-textiles (electronic textiles) are also used in radio frequency identification technology, mainly in the production of tag antennas. For economic reasons, it is important that the finished product is universal, although frequencies in radio systems have different values in different regions of the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!