AI Article Synopsis

  • The paper discusses a method for identifying the aerodynamic coefficients of a spinning projectile, specifically a missile, using gasodynamic engines and a measurement inertial unit based on Newton's law of motion.
  • The identification process employed the maximum likelihood principle within the wavelet domain and was also tested in the time domain to compare results.
  • Results indicated that while noise-free data led to highly accurate aerodynamic coefficient estimates, noise introduced some inaccuracies, especially in the time domain method, whereas wavelet-based estimates remained fairly accurate despite the noise.

Article Abstract

Identification of a spinning projectile controlled with gasodynamic engines is shown in this paper. A missile model with a measurement inertial unit was developed from Newton's law of motion and its aerodynamic coefficients were identified. This was achieved by applying the maximum likelihood principle in the wavelet domain. To assess the results, this was also performed in the time domain. The outcomes were obtained for two cases: when noise was not present and when it was included in the data. In all cases, the identification was performed in the passive mode, i.e., no special system identification experiments were designed. In the noise-free case, aerodynamic coefficients were estimated with high accuracy. When noise was included in the data, the wavelet-based estimates had a drop in their accuracy, but were still very accurate, whereas for the time domain approach the estimates were considered inaccurate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185651PMC
http://dx.doi.org/10.3390/s22114090DOI Listing

Publication Analysis

Top Keywords

aerodynamic coefficients
12
identification spinning
8
spinning projectile
8
time domain
8
noise included
8
included data
8
wavelet-based identification
4
projectile gasodynamic
4
gasodynamic control
4
control aerodynamic
4

Similar Publications

The use of winglet devices is an efficient technique for enhancing aerodynamic performance. This study investigates the effects of winglet cant angles on both the aerodynamics and aeroacoustics of a commercial wing, comparing them to other significant parameters using a parametric analysis. A Full Factorial Design method is employed to generate a matrix of experiments, facilitating a detailed exploration of flow physics, with lift-to-drag ratio (L/D) and the integral of Acoustic Power Level (APL) as the primary representatives of aerodynamic and acoustic performance, respectively.

View Article and Find Full Text PDF

Liquid Structure of Magnesium Aluminates.

Materials (Basel)

December 2024

Interfaces, Confinement, Matériaux et Nanostructures, 45071 Orléans Cedex 2, France.

Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.

View Article and Find Full Text PDF

Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.

View Article and Find Full Text PDF

An experimental study was carried out to investigate the effects of biomimetic vortex generators (biomimetic-VGs) on the aerodynamic performance of the NACA0015 airfoil. Aerodynamic force measurements and titanium dioxide (TiO) based flow visualization technique experiments were performed for test models at Re = 1.2 × 10.

View Article and Find Full Text PDF

In this study, the implementation of a high-order spatial discretization method into a Finite Volume solver is presented. Specific emphasis is put on the analysis of the performance over selected turbomachinery test cases. High-order numerical discretization is achieved by adopting the cell-centered Least-Square reconstruction, which is implemented in the in-house solver HybFlow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!