Estimation of Elbow Wall Thinning Using Ensemble-Averaged Mel-Spectrogram with ResNet-like Architecture.

Sensors (Basel)

Smart Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon 34057, Korea.

Published: May 2022

An elbow wall thinning diagnosis method by highlighting the stationary characteristics of the operating loop is proposed. The accelerations of curved pipe surfaces were measured in a closed test loop operating at a constant pump rpm, combined with curved pipe specimens with artificial wall thinning. The vibration characteristics of wall-thinned elbows were extracted by using a mel-spectrogram in which modal characteristic variation shifting can be expressed. To reduce the deviation of the model's prediction values, the ensemble mean value of the mel-spectrogram was used to emphasize stationary signals and reduce noise signals. A convolutional neural network (CNN) regression model with residual blocks was proposed and showed improved performance compared to the models without the residual block. The proposed regression model predicted the thinning thickness of the elbow excluded in training dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182911PMC
http://dx.doi.org/10.3390/s22113976DOI Listing

Publication Analysis

Top Keywords

wall thinning
12
elbow wall
8
curved pipe
8
regression model
8
estimation elbow
4
thinning
4
thinning ensemble-averaged
4
ensemble-averaged mel-spectrogram
4
mel-spectrogram resnet-like
4
resnet-like architecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!