Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mission-critical wireless sensor networks require a trustworthy and punctual routing protocol to ensure the worst-case end-to-end delay and reliability when transmitting mission-critical data collected by various sensors to gateways. In particular, the trustworthiness of mission-critical data must be guaranteed for decision-making and secure communications. However, it is a challenging issue to meet the requirement of both reliability and QoS in sensor networking environments where cyber-attacks may frequently occur and a lot of mission-critical data is generated. This study proposes a trust-based routing protocol that learns the trust elements using Q-learning to detect various attacks and ensure network performance. The proposed mechanism ensures the prompt detection of cyber threats that may occur in a mission-critical wireless sensor network and guarantees the trustworthy transfer of mission-critical sensor data. This paper introduces a distributed transmission technology that prioritizes the trustworthiness of mission-critical data through Q-learning results considering trustworthiness, QoS, and energy factors. It is a technology suitable for mission-critical wireless sensor network operational environments and can reliably operate resource-constrained devices. We implemented and performed a comprehensive evaluation of our scheme using the OPNET simulator. In addition, we measured packet delivery rates, throughput, survivability, and delay considering the characteristics of mission-critical sensor networks. The simulation results show an enhanced performance when compared with other mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183145 | PMC |
http://dx.doi.org/10.3390/s22113975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!