The disinfection of wastewater using nanoparticles (NPs) has become a focal area of research in water treatment. In this study, zinc oxide (ZnO) NPs were synthesized using the microwave heating crystallization technique and characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Qualitative well diffusion and quantitative minimum inhibitory concentration (MIC) tests were conducted to determine the antimicrobial activity of ZnO NPs against selected waterborne pathogenic microbes. FTIR spectral studies confirmed that the binding of urea with Zn occurs through Zn-O stretching. XRD confirmed the crystallized identity in a hexagonal ZnO wurtzite-type structure. The formation of zones of inhibition and low MIC values in the antimicrobial analysis were indicative of the effective antimicrobial activity of zinc oxide nanoparticles against the test microorganisms. The application of metallic nanoparticles in water treatment could curb the spread of waterborne microbial diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182006PMC
http://dx.doi.org/10.3390/molecules27113532DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
zinc oxide
12
activity zinc
8
oxide nanoparticles
8
selected waterborne
8
water treatment
8
zno nps
8
synthesis characterization
4
antimicrobial
4
characterization antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!