Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives - and - showed activity against TDP1 at a low micromolar range with IC ~5-6 μM, whereas camphor-containing compounds and were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182348 | PMC |
http://dx.doi.org/10.3390/molecules27113374 | DOI Listing |
Molecules
May 2022
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives - and - showed activity against TDP1 at a low micromolar range with IC ~5-6 μM, whereas camphor-containing compounds and were ineffective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!