A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites. | LitMetric

AI Article Synopsis

  • Fused Deposition Modeling (FDM) can create complex designs using thermoplastic or composite materials, making it essential to analyze how printing parameters affect part quality and performance.
  • The study focused on optimizing FDM parameters for oil palm fiber reinforced thermoplastic composites, including layer thickness, orientation, infill density, and printing speed, to assess their impact on mechanical properties through tests and statistical analysis.
  • The results revealed that the best settings for mechanical strength were a layer thickness of 0.4 mm, a flat orientation at 0 degrees, 50% infill density, and a speed of 10 mm/s, highlighting the link between printing conditions and part performance.

Article Abstract

Fused Deposition Modeling (FDM) is capable of producing complicated geometries and a variety of thermoplastic or composite products. Thus, it is critical to carry out the relationship between the process parameters, the finished part's quality, and the part's mechanical performance. In this study, the optimum printing parameters of FDM using oil palm fiber reinforced thermoplastic composites were investigated. The layer thickness, orientation, infill density, and printing speed were selected as optimization parameters. The mechanical properties of printed specimens were examined using tensile and flexural tests. The experiments were designed using a Taguchi experimental design using a L orthogonal array with four factors, and three levels. Analysis of variance (ANOVA) was used to determine the significant parameter or factor that influences the responses, including tensile strength, Young's modulus, and flexural strength. The fractured surface of printed parts was investigate using scanning electron microscopy (SEM). The results show the tensile strength of the printed specimens ranged from 0.95 to 35.38 MPa, the Young's modulus from 0.11 to 1.88 GPa, and the flexural strength from 2.50 to 31.98 MPa. In addition, build orientation had the largest influence on tensile strength, Young's modulus, and flexural strength. The optimum printing parameter for FDM using oil palm fiber composite was 0.4 mm layer thickness, flat (0 degree) of orientation, 50% infill density, and 10 mm/s printing speed. The results of SEM images demonstrate that the number of voids seems to be much bigger when the layer thickness is increased, and the flat orientation has a considerable influence on the bead structure becoming tougher. In a nutshell, these findings will be a valuable 3D printing dataset for other researchers who utilize this material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182676PMC
http://dx.doi.org/10.3390/polym14112140DOI Listing

Publication Analysis

Top Keywords

fdm oil
12
oil palm
12
palm fiber
12
layer thickness
12
tensile strength
12
young's modulus
12
flexural strength
12
fused deposition
8
deposition modeling
8
modeling fdm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!