Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling microstructures that allow cell infiltration. However, BSPs fail to exhibit the sufficient surface reactivity, limiting protein adsorption and/or cell adhesion and jeopardizing the overall graft performance. Here, we present a methodology for the fabrication of three-layered polycaprolactone (PCL)-based tubular structures with biochemical cues to improve protein adsorption and cell adhesion. For this purpose, PCL was backbone-oxidized (O-PCL) and cast over a photolithography-manufactured microgrooved mold to obtain a bioactive surface as demonstrated using a protein adsorption assay (BSA), Fourier transform infrared spectroscopy (FTIR) and calorimetric analyses. Then, two layers of PCL:gelatin (75:25 and 95:5 ), obtained using a novel single-desolvation method, were electrospun over the casted O-PCL to mimic a vascular wall with a physicochemical gradient to guide cell adhesion. Furthermore, tensile properties were shown to withstand the physiological mechanical stresses and strains. In vitro characterization, using L929 mouse fibroblasts, demonstrated that the multilayered scaffold is a suitable platform for cell infiltration and proliferation from the innermost to the outermost layer as is needed for vascular wall regeneration. Our work holds promise as a strategy for the low-cost manufacture of next-generation polymer-based hierarchical scaffolds with high bioactivity and resemblance of ECM's microstructure to accurately guide cell attachment and proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182901 | PMC |
http://dx.doi.org/10.3390/polym14112135 | DOI Listing |
Cureus
December 2024
Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, JPN.
Introduction Hemodialysis (HD) therapy is a crucial treatment for patients with renal failure but can impact the hemodynamics of antithrombin (AT), a protein essential for regulating hemostasis and preventing thrombosis. Reduced AT activity can lead to thrombus formation at unusual sites and increase the risk of recurrent venous thromboembolism. The loss of AT during HD or hemodiafiltration (HDF) through leakage or adsorption onto dialysis membranes has not been fully investigated, and its effects on AT hemodynamics remain unclear.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Introduction: Two-dimensional (2D) MXene, recognized for its outstanding physical and chemical properties,has gained attention as a promising material in the biomedical field. However, its potential in tissue engineering applications remains underexplored. This study focuses on synthesizing SF-MXene composite electrospun fibers and evaluating their suitability for biomedical applications.
View Article and Find Full Text PDFVet Microbiol
December 2024
Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFChemSusChem
January 2025
Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!