Specific lung ultrasound signs combined with clinical parameters allow for early diagnosis of ventilator-associated pneumonia in the general ICU population. This retrospective cohort study aimed to determine the accuracy of lung ultrasound monitoring for ventilator-associated pneumonia diagnosis in COVID-19 patients. Clinical (i.e., clinical pulmonary infection score) and ultrasound (i.e., presence of consolidation and a dynamic linear−arborescent air bronchogram, lung ultrasound score, ventilator-associated lung ultrasound score) data were collected on the day of the microbiological sample (pneumonia-day) and 48 h before (baseline) on 55 bronchoalveolar lavages of 33 mechanically-ventilated COVID-19 patients who were monitored daily with lung ultrasounds. A total of 26 samples in 23 patients were positive for ventilator-associated pneumonia (pneumonia cases). The onset of a dynamic linear−arborescent air bronchogram was 100% specific for ventilator-associated pneumonia. The ventilator-associated lung ultrasound score was higher in pneumonia-cases (2.5 (IQR 1.0 to 4.0) vs. 1.0 (IQR 1.0 to 1.0); p < 0.001); the lung ultrasound score increased from baseline in pneumonia-cases only (3.5 (IQR 2.0 to 6.0) vs. −1.0 (IQR −2.0 to 1.0); p = 0.0001). The area under the curve for clinical parameters, ventilator-associated pneumonia lung ultrasound score, and lung ultrasound score variations were 0.472, 0.716, and 0.800, respectively. A newly appeared dynamic linear−arborescent air bronchogram is highly specific for ventilator-associated pneumonia in COVID-19 patients. A high ventilator-associated pneumonia lung ultrasound score (or an increase in the lung ultrasound score) orients to ventilator-associated pneumonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181291PMC
http://dx.doi.org/10.3390/jcm11113001DOI Listing

Publication Analysis

Top Keywords

lung ultrasound
44
ventilator-associated pneumonia
36
ultrasound score
32
covid-19 patients
16
ultrasound
12
dynamic linear−arborescent
12
linear−arborescent air
12
air bronchogram
12
ventilator-associated
11
lung
11

Similar Publications

Diagnosing non-tuberculous mycobacterial pulmonary disease (NTM-PD) in patients unable to produce sputum spontaneously requires invasive procedures to obtain valid respiratory specimens. In this retrospective study, we evaluated the results of microbiological tests performed on respiratory samples of 132 patients affected by NTM-PD. In the diagnostic workout, 98 patients performed both induced sputum (IS) and bronchoalveolar lavage (BAL) and were enrolled in our study.

View Article and Find Full Text PDF

This review presents current opinions on an uncommon condition called catamenial pneumothorax (CP), which is usually associated with thoracic endometriosis syndrome (TES). TES is characterized by the presence of endometriotic lesions in pleura and lung parenchyma and presents with various clinical signs and symptoms, including catamenial pneumothorax. Their diagnosis is often delayed.

View Article and Find Full Text PDF

: Severe and critical COVID-19 pneumonia can lead to long-term complications, especially affecting pulmonary function and immune health. However, the extent and progression of these complications over time are not well understood. This study aimed to assess lung function, radiological changes, and some immune parameters in survivors of severe and critical COVID-19 up to 12 months after hospital discharge.

View Article and Find Full Text PDF

Pulmonary abscess is a rare but serious condition in pediatric patients, caused by severe pulmonary infection that leads to tissue destruction and necrosis. It can be classified as primary or secondary depending on the cause. Establishing an etiology in pediatric pulmonary abscesses is challenging, underscoring the essential role of advanced imaging techniques, such as computed tomography, in achieving an accurate diagnosis and differentiating among various conditions that may mimic lung abscess.

View Article and Find Full Text PDF

Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!