Assessing maximum voluntary bite force is important to characterize the functional state of the masticatory system. Due to several factors affecting the estimation of the maximum bite force, a unique solution combining desirable features such as reliability, accuracy, precision, usability, and comfort is not available. The aim of the present study was to develop a low-cost bite force measurement device allowing for subject-specific customization, comfortable bite force expression, and reliable force estimation over time. The device was realized using an inexpensive load cell, two 3D printed ergonomic forks hosting reusable subject-specific silicone molds, a read-out system based on a low-cost microcontroller, and a wireless link to a personal computer. A simple model was used to estimate bite force taking into account individual morphology and device placement in the mouth. Measurement reliability, accuracy, and precision were assessed on a calibration dataset. A validation procedure on healthy participants was performed to assess the repeatability of the measurements over multiple repetitions and sessions. A 2% precision and 2% accuracy were achieved on measurements of forces in the physiological range of adult bite forces. Multiple recordings on healthy participants demonstrated good repeatability (coefficient of variation 11%) with no significant effect of repetition and session. The novel device provides an affordable and reliable solution for assessing maximum bite force that can be easily used to perform clinical evaluations in single sessions or in longitudinal studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182234 | PMC |
http://dx.doi.org/10.3390/ma15114000 | DOI Listing |
Life (Basel)
December 2024
School of Dentistry, São Paulo State University, Araçatuba 16015-050, Brazil.
Low-level laser therapy (LLLT) is known for its biostimulant properties, which can reduce inflammation and promote tissue regeneration. The present study is randomized, blinded, and placebo-controlled and aims to investigate the role of LLLT in the postoperative recovery of facial fractures. Patients with fractures of the zygomatic bone are selected and divided into two groups: low-level laser and red placebo light.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Dental Implantology, Jinan Stomatological Hospital, Jinan, 250002, Shandong, People's Republic of China.
Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).
Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.
BMC Oral Health
January 2025
Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, 52200, Turkey.
Background: Immature maxillary central teeth can be managed by using several treatment options. The aim of this finite element stress analysis study was to evaluate the effect of different treatment procedures on the stresses on immature maxillary incisor teeth models that generated on cone beam computed tomography, by trauma and bite forces.
Methods: A total of 11 different models consisting of revascularization treatment using MTA and biodentine and the state of the root apex formed with cement after treatment, apexification, modified apexification, traditional root canal treatment and two different control groups have been created.
Nature
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
The forces generated by action potentials in muscle cells shuttle blood, food and waste products throughout the luminal structures of the body. Although non-invasive electrophysiological techniques exist, most mechanosensors cannot access luminal structures non-invasively. Here we introduce non-toxic ingestible mechanosensors to enable the quantitative study of luminal forces and apply them to study feeding in living Caenorhabditis elegans roundworms.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
December 2024
Department of Neurosurgery, Southern TOHOKU Research Institute for Neuroscience, Southern TOHOKU General Hospital, Koriyama, Fukushima, Japan.
Background: Rupture of the lumbar catheter in lumboperitoneal (LP) shunts is rare and typically occurs due to long-term mechanical stress. The authors describe an unusual case of early postoperative lumbar catheter severing after a fall on the buttocks.
Observations: A 78-year-old woman underwent LP shunt placement for communicating hydrocephalus after aneurysmal subarachnoid hemorrhage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!