Single-crystal sapphire (α-AlO) is an important material and widely used in many advanced fields. The semi-fixed abrasive grain processing method based on solid-phase reaction theory is a prominent processing method for achieving ultra-precision damage-free surfaces. In order to develop the proposed method for polishing sapphire, the basic characteristics of the semi-fixed abrasive grains polishing tool for polishing sapphire were determined. Weight analysis was used to study the influence rules of parameters on surface roughness and material removal rates using an orthogonal experiment. Then, the optimized polishing tool was obtained through a mixture of abrasive particle sizes to reduce the difficulty in molding the polishing tool. Finally, polishing experiments using different polishing tools were carried out to investigate polishing performance by considering the surface roughness, material removal rate and the surface morphology during polishing. The results showed that (1) external load affects the surface roughness and material removal rate the most, followed by abrasive particle size, sand bond ratio, revolution speed of the workpiece and he polishing tool; (2) the difficulty in manufacturing the polishing tool could be reduced by mixing larger abrasive particles with small abrasive particles; (3) the polishing tool with 200 nm and 1 μm particle sizes performed best in the first 210 min polishing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182018PMC
http://dx.doi.org/10.3390/ma15113995DOI Listing

Publication Analysis

Top Keywords

polishing tool
24
polishing
15
semi-fixed abrasive
12
polishing sapphire
12
surface roughness
12
roughness material
12
material removal
12
basic characteristics
8
characteristics semi-fixed
8
abrasive grains
8

Similar Publications

The Effect of Plaque Detectors on the Color Stability of Two Types of Restorative Materials.

J Esthet Restor Dent

January 2025

Department of Biomedical and Neuromotor Science (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.

Objective: To investigate the color stability of a one-shade resin-based composite material (RC) and a glass-ionomer cement (GIC) after staining with plaque detectors (PDs) with different formulations and delivery forms.

Materials And Methods: Rectangular-shaped specimens (7 × 3 × 2 mm) were produced with RC (Venus Diamond One, Kulzer) and GIC (Fujy IX GP, GC) (n = 30). Further, the following PDs were used on the specimens: (1) tablets (T; Plaq-Search, TePe); (2) mouthwash (M; Plaque Agent, Miradent); and (3) light-curing liquid (L; Plaque test, Ivoclar).

View Article and Find Full Text PDF

In silico optimization of a challenging bispecific antibody chromatography step.

Biotechnol Prog

January 2025

Automation, Digital and Learning Solutions, Cytiva, Karlsruhe, Germany.

Mechanistic modeling of chromatographic steps is an effective tool in biopharma process development that enhances process understanding and accelerates optimization efforts and subsequent risk assessment. A relatively new model for ion exchange chromatography is the colloidal particle adsorption (CPA) formalism, which promises improved separation of material and molecule-specific parameters. This case study demonstrates a straightforward CPA modeling workflow to describe an ion exchange chromatography polishing step of a knobs-into-holes construct bispecific antibody molecule.

View Article and Find Full Text PDF

Effect of Surface Finishing and Nitriding on the Wetting Properties of Hot Forging Tools.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-695 Poznan, Poland.

Lubrication is a critical aspect of the metal forming process and it is strongly influenced by the surface texture of the tool-forming surfaces. This study is focused on determining the effect of surface finish and heat treatment on wettability involving commonly used lubrication agents. Three different finishing states are evaluated (as-ground, as-polished and as-nitrided).

View Article and Find Full Text PDF

Over the past 30 years, researchers have developed X-ray-focusing telescopes by employing the principle of total reflection in thin metal films. The Wolter-I focusing mirror with variable-curvature surfaces demands high precision. However, there has been limited investigation into the removal mechanisms for variable-curvature X-ray mandrels, which are crucial for achieving the desired surface roughness and form accuracy, especially in reducing mid-spatial frequency (MSF) errors.

View Article and Find Full Text PDF
Article Synopsis
  • The study of taxonomic composition has shifted from traditional methods to advanced DNA sequencing techniques, particularly metabarcoding, which uses targeted genome portions for high-throughput sequencing.
  • Recent innovations in Oxford Nanopore Technologies have made sequencing more accessible and effective while presenting specific errors and a need for refined bioinformatics tools to handle long-read data.
  • PRONAME, a new open-source pipeline designed for Nanopore data, enhances sequence accuracy and supports custom database integration, achieving over 99.5% accuracy in tests, thus providing a reliable method for analyzing complex biological communities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!