Numerical Analysis of Degradation and Capacity Loss in Graphite Active Particles of Li-Ion Battery Anodes.

Materials (Basel)

Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain.

Published: June 2022

It is well known that the performance and durability of lithium-ion batteries (LIBs) can be severely impaired by fracture events that originate in stresses due to Li ion diffusion in fast charge-discharge cycles. Existing models of battery damage overlook either the role of particle shape in stress concentration, the effect of material disorder and preexisting defects in crack initiation and propagation, or both. In this work we present a novel, three-dimensional, and coupled diffusive-mechanical numerical model that simultaneously accounts for all these phenomena by means of (i) a random particle generator and (ii) a stochastic description of material properties implemented within the lattice method framework. Our model displays the same complex fracture patterns that are found experimentally, including crack nucleation, growth, and branching. Interestingly, we show that irregularly shaped active particles can suffer mechanical damage up to 60% higher than that of otherwise equivalent spherical particles, while material defects can lead to damage increments of up to 110%. An evaluation of fracture effects in local Li-ion diffusivity shows that effective diffusion can be reduced up to 25% at the particle core due to lithiation, while it remains at ca. 5% below the undamaged value at the particle surface during delithiation. Using a simple estimate of capacity loss, we also show that the C-rate has a nonlinear effect on battery degradation, and the estimated capacity loss can surpass 10% at a 2C charging rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182454PMC
http://dx.doi.org/10.3390/ma15113979DOI Listing

Publication Analysis

Top Keywords

capacity loss
12
active particles
8
numerical analysis
4
analysis degradation
4
degradation capacity
4
loss graphite
4
graphite active
4
particles li-ion
4
li-ion battery
4
battery anodes
4

Similar Publications

Introduction/aims: Spirometry is the conventional means to measure lung function in amyotrophic lateral sclerosis (ALS), but is dependent on patient effort and bulbar strength. We aimed to use electric impedance tomography (EIT), an emerging non-invasive imaging modality, to measure dynamic lung volume changes.

Methods: Twenty-one patients with ALS underwent sitting and supine spirometry for forced vital capacity (FVC), and sitting and supine EIT.

View Article and Find Full Text PDF

Purpose: The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is an invasive and a highly polyphagous species with a strong dispersal capacity. Unfortunately, there is currently no effective control method that can prevent or reduce the economic loss caused by this pest. Among natural enemies, microsporidia cause infections in insects so that they can generally shorten life span, reduce fertility and inhibit growth.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effects of the complete or partial substitution (0, 20, 40, and 100%) of the pork backfat in prepared sausage with protein emulsion gels loaded with curcumin. The effects of three protein emulsion gels (i.e.

View Article and Find Full Text PDF

Dissipation Alters Modes of Information Encoding in Small Quantum Reservoirs near Criticality.

Entropy (Basel)

January 2025

Chula Intelligent and Complex Systems Lab, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Quantum reservoir computing (QRC) has emerged as a promising paradigm for harnessing near-term quantum devices to tackle temporal machine learning tasks. Yet, identifying the mechanisms that underlie enhanced performance remains challenging, particularly in many-body open systems where nonlinear interactions and dissipation intertwine in complex ways. Here, we investigate a minimal model of a driven-dissipative quantum reservoir described by two coupled Kerr-nonlinear oscillators, an experimentally realizable platform that features controllable coupling, intrinsic nonlinearity, and tunable photon loss.

View Article and Find Full Text PDF

In gas-to-methanol processes, optimizing multi-energy systems is a critical challenge toward efficient energy allocation. This paper proposes an entropy-based stochastic optimization method for a multi-energy system in a gas-to-methanol process, aiming to achieve optimal allocation of gas, steam, and electricity to ensure executability under modeling uncertainties. First, mechanistic models are developed for major chemical equipments, including the desulfurization, steam boilers, air separation, and syngas compressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!