Honeycomb core sandwich plates are widely used as a lightweight, high-strength sound insulation material. However, they do not perform well in specific frequency bands. Acoustic metamaterials can break the law of mass in specific frequency bands and have high sound transmission loss (STL); however, the resonance frequency is difficult to regulate. To solve this problem, this paper first proposes an infinitely large metamaterial honeycomb core sandwich plate, which can generate newly tuned piezoelectric resonance frequencies, and we study its STL. The structure has piezoelectric patches arranged in sub-wavelength arrays with inductance shunting circuits that are elastically connected to both sides of the honeycomb core sandwich plate. The effective dynamic mass density and effective dynamic bending stiffness of the metamaterial plates were obtained using the effective medium (EM) method. A theoretical model for the numerical calculation of oblique STL and diffuse-field STL was established by the structural bending wave method. The finite element simulation method was used to verify that the metamaterial plates can generate three peaks at 1147 Hz, 1481 Hz and 1849 Hz in oblique or diffuse-field STL curves, which reached 57 dB, 86 dB and 63 dB, respectively, and are significantly better than the plate rigidly connected with piezoelectric sheets and the bare plate with the same mass. In order to better understand the characteristics of STL, the explicit functions of the resonance frequencies were derived. Key influencing factors were analyzed, and the regulation law of new piezoelectric resonance frequencies was clarified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182446 | PMC |
http://dx.doi.org/10.3390/ma15113923 | DOI Listing |
Polymers (Basel)
December 2024
Metallurgical and Materials Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials.
View Article and Find Full Text PDFGeobiology
December 2024
Géosciences Montpellier, CNRS, Université de Montpellier, Montpellier, France.
Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China. Electronic address:
Lightweight microwave absorbing structures have wide applications in aerospace and military equipment. In general, honeycomb sandwich structure is regarded as an ideal choice. However, traditional honeycomb sandwich structure designs have limitations in improving absorption bandwidth, and their impact resistance remains unremarkable.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China.
Stainless steel core plates (SSCPs) show great potential for modular construction due to their superiority of excellent mechanical properties, light weight, and low cost over traditional concrete and honeycomb structures. During the brazing process of SSCP joints which connect the skin panel and core tubes, it is difficult to keep an even heat flow of inert gas in the vast furnace, which can lead to partially missing solder defects in brazing joints. Pulsed eddy current imaging (PECI) has demonstrated feasibility for detecting missing solder defects, but various factors including lift-off variation and image blurring can deteriorate the quality of C-scan images, resulting in inaccurate evaluation of the actual state of the brazed joints.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Department of Materials Engineering and Metallurgy, University of São Paulo, São Paulo 05508-220, Brazil.
Sandwich panels are widely used in the naval and aerospace industries to withstand the normal tensile, compressive, and shear stresses associated with bending. The faces of sandwich composites are usually made of metals such as aluminum and, in some studies with composites, using a polymeric matrix, but there are no studies in the literature using a castor oil polyurethane matrix. The core of the panel must keep the faces apart and be rigid perpendicular to them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!