Metal additive manufacturing (AM) is an innovative manufacturing technology that uses a high-power laser for the layer-by-layer production of metal components. Despite many achievements in the field of AM, few studies have focused on the nondestructive characterization of microstructures, such as grain size and porosity. In this study, various microstructures of additively manufactured metal components were characterized non-destructively using linear/nonlinear ultrasonic techniques. The contributions of this study are as follows: (1) presenting correlation analyses of various microstructures (grain size and texture, lack of fusion, and porosity) and ultrasonic properties (ultrasonic velocity, attenuation, and nonlinearity parameters), (2) development of nondestructive microstructural characterization techniques for additively manufactured components; and (3) exploring the potential for the online monitoring of AM processes owing to the nondestructive nature of the proposed technique. The performance of the proposed technique was validated using additively manufactured samples under varying laser beam speed conditions. The characteristics of the target microstructures characterized using the proposed technique were consistent with the results obtained using destructive optical microscopy and electron back-scattered diffraction methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181861 | PMC |
http://dx.doi.org/10.3390/ma15113876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!