This study demonstrates the utility of thermo-regulated phase separable alumina/camphene suspensions containing poly(methyl methacrylate) (PMMA) microspheres as porogens for the production of multi-scale porosity structures. The homogeneous suspension prepared at 60 °C could undergo phase separation during freezing at room temperature. This process resulted in the 3D networks of camphene crystals and alumina walls containing PMMA microspheres. As a consequence, relatively large dendritic pores with several tens of microns size could be created as the replica of frozen camphene crystals. In addition, after the removal of PMMA microspheres via heat-treatment, micron-sized small spherical pores could be generated in alumina walls. As the PMMA content with respect to the alumina content increased from 0 vol% to 40 vol%, while the camphene content in the suspensions was kept constant (70 vol%), the overall porosity increased from 45.7 ± 0.5 vol% to 71.4 ± 0.5 vol%. This increase in porosity is attributed to an increase in the fraction of spherical pores in the alumina walls. Thus, compressive strength decreased from 153 ± 18.3 MPa to 33 ± 7.2 MPa. In addition, multi-scale porosity alumina objects with a honeycomb structure comprising periodic hexagonal macrochannels surrounded by dual-scale porosity walls were constructed using a 3D plotting technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181552PMC
http://dx.doi.org/10.3390/ma15113875DOI Listing

Publication Analysis

Top Keywords

pmma microspheres
12
alumina walls
12
dual-scale porosity
8
porosity alumina
8
multi-scale porosity
8
camphene crystals
8
walls pmma
8
spherical pores
8
alumina
6
porosity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!