A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compressive Fatigue Investigation on High-Strength and Ultra-High-Strength Concrete within the SPP 2020. | LitMetric

The influence of the compressive strength of concrete on fatigue resistance has not been investigated thoroughly and contradictory results can be found in the literature. To date, the focus of concrete fatigue research has been on the determination of the numbers of cycles to failure. Concerning the fatigue behaviour of high-strength concrete (HPC) and, especially, ultra-high-strength concrete (UHPC), which is described by damage indicators such as strain and stiffness development, little knowledge is available, as well as with respect to the underlying damage mechanisms. This lack of knowledge has led to uncertainties concerning the treatment of high-strength and ultra-high-strength concretes in the fatigue design rules. This paper aims to decrease the lack of knowledge concerning the fatigue behaviour of concrete compositions characterised by a very high strength. Within the priority programme SPP 2020, one HPC and one UHPC subjected to monotonically increasing and cyclic loading were investigated comparatively in terms of their numbers of cycles to failure, as well as the damage indicators strain and stiffness. The results show that the UHPC reaches a higher stiffness and a higher ultimate strain and strength than the HPC. The fatigue investigations reveal that the UHPC can resist a higher number of cycles to failure than the HPC and the damage indicators show an improved fatigue behaviour of the UHPC compared to the HPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181099PMC
http://dx.doi.org/10.3390/ma15113793DOI Listing

Publication Analysis

Top Keywords

cycles failure
12
fatigue behaviour
12
damage indicators
12
high-strength ultra-high-strength
8
ultra-high-strength concrete
8
spp 2020
8
concrete fatigue
8
numbers cycles
8
concerning fatigue
8
indicators strain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!