AI Article Synopsis

  • During laser penetration, a melt pool forms before perforation, and understanding its dynamics is crucial for accurate physical descriptions and improved simulations.
  • A new 2D triangulation setup is introduced to measure the material cross-section during the laser process, allowing for detailed visualization of the melt pool's development.
  • Additionally, a 3D triangulation setup is developed to provide comprehensive insights into the entire melt pool, revealing a mirror-symmetric structure and enabling extrapolation from the central profile to the outer regions.

Article Abstract

During laser penetration, the irradiated samples form a melt pool before perforation. Knowledge of the dynamics of this melt pool is of interest for the correct physical description of the process and leads to improved simulations. However, a direct investigation, especially at the location of high-power laser interaction with large spot diameters in the centimeter range is missing until now. Here, the applicability of 2D triangulation for surface topology observations is demonstrated. With the designed bidirectional 2D triangulation setup, the material cross-section is measured by profile detection at the front and back side. This allows a comprehensive description of the penetration process to be established, which is important for a detailed explanation of the process. Specific steps such as surface melting, indentations, protrusions during melt pool development and their dynamics, and the perforation are visualized, which were unknown until now. Furthermore, a scanning 3D triangulation setup is developed to obtain more information about the entire melt pool at the front side, and not just a single intersection line. The measurements exhibit a mirror-symmetric melt pool and the possibility to extrapolate from the central profile to the outer regions in most cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181421PMC
http://dx.doi.org/10.3390/ma15113743DOI Listing

Publication Analysis

Top Keywords

melt pool
20
large spot
8
laser penetration
8
triangulation setup
8
front side
8
melt
5
pool
5
triangulation
4
triangulation suitable
4
suitable situ
4

Similar Publications

Operando X-Ray Tomoscopy of Laser Beam Welding.

Adv Sci (Weinh)

January 2025

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.

View Article and Find Full Text PDF

In this study, the melt pool formation behavior of high-speed laser-arc hybrid welding of aluminum plates was simulated using finite element analysis (FEA). To evaluate the heat input efficiencies of the laser and arc, standalone laser or arc welding experiments were conducted using the same arc or laser processing parameters as those employed in hybrid welding. These experiments were also simulated using FEA to calibrate the laser and arc heat adsorption parameters.

View Article and Find Full Text PDF

Variations in the microstructural morphology with building direction during selective laser melting (SLM) result in the anisotropic mechanical properties of the specimens, while heat treatment effectively reduces this anisotropy. The degree of anisotropy of the material can be assessed by calculating the variance (σ) of the mechanical properties (strength, hardness) at different building directions at different temperatures. In this work, the effects of heat treatment temperatures (450°, 750 °C, and 1050 °C) and building directions (0°, 45°, 60°, and 90°) on the microstructure, hardness, and tensile properties of selective laser melting (SLM) SS316L were investigated.

View Article and Find Full Text PDF

Non-invasive brain stimulation (NIBS) is sometimes used alongside medication to alleviate motor symptoms in people with Parkinson's disease (PD). However, the evidence supporting NIBS's effectiveness for improving motor function in PD patients is uncertain. .

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!