Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181223PMC
http://dx.doi.org/10.3390/ijms23116300DOI Listing

Publication Analysis

Top Keywords

trp-kyn pathway
12
trp metabolism
8
pathway
6
trp
6
metabolism
5
emerging cross-species
4
cross-species marker
4
marker organismal
4
organismal health
4
health tryptophan-kynurenine
4

Similar Publications

Inulin alleviates chronic ketamine-induced impairments in memory and prepulse inhibition by regulating the gut microbiota, inflammation, and kynurenine pathway.

Int J Biol Macromol

January 2025

Institute of Neuropsychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China. Electronic address:

Chronic ketamine administration causes cognitive impairments similar to those observed in schizophrenia. Growing evidence suggests that patients with schizophrenia show alterations in gut microbiota, which is associated with cognitive impairments. Inulin could regulate gut microbiota.

View Article and Find Full Text PDF

HIV-1 remains a global challenge, especially in high-prevalence areas like South Africa. This study explores the relationship between inflammation and metabolism in people with HIV, focusing on immune markers and the tryptophan-kynurenine (Trp-Kyn) pathway. We examined immune markers (hsCRP, suPAR, IL-6, NGAL, and sCD163) and Trp-Kyn metabolites (QUIN, Trp, Kyn, Trp/Kyn ratio, and kynurenic acid) in n = 69 treatment-naive South African people with HIV.

View Article and Find Full Text PDF

Background And Purpose: Alterations in tryptophan-kynurenine (TRP-KYN) pathway are implicated in major depressive disorder (MDD). α7 nicotinic acetylcholine (α7nACh) receptor regulates the hypothalamic-pituitary-adrenal (HPA) axis. We have shown that deficiency of kynurenine 3-monooxygenase (KMO) induces depression-like behaviour via kynurenic acid (KYNA; α7nACh antagonist).

View Article and Find Full Text PDF

Maternal immune activation induces neurodevelopmental impairments of adult offspring through alterations in tryptophane-kynurenine pathway in the placenta.

Biochem Biophys Res Commun

December 2024

Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan. Electronic address:

Maternal immune activation (MIA) is recognized as one of the significant environmental risk factors for neuropsychiatric disorders such as schizophrenia in adult offspring. However, the pathophysiological mechanisms remain unknown. The tryptophan (TRP)-kynurenine (KYN) pathway, influenced by inflammation, may be implicated in the pathophysiology of neuropsychiatric disorders.

View Article and Find Full Text PDF

The aim of this study was to investigate the role of 17β-estradiol (E2)-mediated oestrogen receptor (ER) in modulating the depressive-like behaviours of ovariectomy (OVX) mice and the associated mechanisms. E2 was administrated in OVX mice. The behaviour and physiological changes of OVX mice including immobility time in tail suspension test (TST) and forced swimming test (FST), levels of serum E2, inflammatory mediators, oxidative stress factors, indoleamine2,3-dioxygenase 1 (IDO1) and the neurotransmitters mediated by IDO1 activation were then recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!