Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181223 | PMC |
http://dx.doi.org/10.3390/ijms23116300 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Neuropsychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China. Electronic address:
Chronic ketamine administration causes cognitive impairments similar to those observed in schizophrenia. Growing evidence suggests that patients with schizophrenia show alterations in gut microbiota, which is associated with cognitive impairments. Inulin could regulate gut microbiota.
View Article and Find Full Text PDFAIDS
January 2025
Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.
HIV-1 remains a global challenge, especially in high-prevalence areas like South Africa. This study explores the relationship between inflammation and metabolism in people with HIV, focusing on immune markers and the tryptophan-kynurenine (Trp-Kyn) pathway. We examined immune markers (hsCRP, suPAR, IL-6, NGAL, and sCD163) and Trp-Kyn metabolites (QUIN, Trp, Kyn, Trp/Kyn ratio, and kynurenic acid) in n = 69 treatment-naive South African people with HIV.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan.
Background And Purpose: Alterations in tryptophan-kynurenine (TRP-KYN) pathway are implicated in major depressive disorder (MDD). α7 nicotinic acetylcholine (α7nACh) receptor regulates the hypothalamic-pituitary-adrenal (HPA) axis. We have shown that deficiency of kynurenine 3-monooxygenase (KMO) induces depression-like behaviour via kynurenic acid (KYNA; α7nACh antagonist).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan. Electronic address:
Maternal immune activation (MIA) is recognized as one of the significant environmental risk factors for neuropsychiatric disorders such as schizophrenia in adult offspring. However, the pathophysiological mechanisms remain unknown. The tryptophan (TRP)-kynurenine (KYN) pathway, influenced by inflammation, may be implicated in the pathophysiology of neuropsychiatric disorders.
View Article and Find Full Text PDFJ Cell Mol Med
October 2024
Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
The aim of this study was to investigate the role of 17β-estradiol (E2)-mediated oestrogen receptor (ER) in modulating the depressive-like behaviours of ovariectomy (OVX) mice and the associated mechanisms. E2 was administrated in OVX mice. The behaviour and physiological changes of OVX mice including immobility time in tail suspension test (TST) and forced swimming test (FST), levels of serum E2, inflammatory mediators, oxidative stress factors, indoleamine2,3-dioxygenase 1 (IDO1) and the neurotransmitters mediated by IDO1 activation were then recorded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!