Molecular glue (MG) compounds are a type of unique small molecule that can change the protein-protein interactions (PPIs) and interactomes by degrading, stabilizing, or activating the target protein after their binging. These small-molecule MGs are gradually being recognized for their potential application in treating human diseases, including cancer. Evidence suggests that small-molecule MG compounds could essentially target any proteins, which play critical roles in human disease etiology, where many of these protein targets were previously considered undruggable. Intriguingly, most MG compounds with high efficacy for cancer treatment can glue on and control multiple key protein targets. On the other hand, a single key protein target can also be glued by multiple MG compounds with distinct chemical structures. The high flexibility of MG-protein interaction profiles provides rich soil for the growth and development of small-molecule MG compounds that can be used as molecular tools to assist in unraveling disease mechanisms, and they can also facilitate drug development for the treatment of human disease, especially human cancer. In this review, we elucidate this concept by using various types of small-molecule MG compounds and their corresponding protein targets that have been documented in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181451PMC
http://dx.doi.org/10.3390/ijms23116206DOI Listing

Publication Analysis

Top Keywords

small-molecule compounds
12
protein targets
12
change protein-protein
8
protein-protein interactions
8
treatment human
8
human cancer
8
human disease
8
key protein
8
compounds
6
human
5

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The recent severe acute respiratory syndrome coronavirus 2 pandemic has clearly exemplified the need for broad-spectrum antiviral (BSA) medications. However, previous outbreaks show that about one year after an outbreak, interest in antiviral research diminishes and the work toward an effective medication is left unfinished. Martin et al.

View Article and Find Full Text PDF

CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma.

Adv Sci (Weinh)

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.

The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.

View Article and Find Full Text PDF

Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities ( < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments.

View Article and Find Full Text PDF

Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we develop a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We apply this platform to engineer amide synthetases by evaluating substrate preference for 1217 enzyme variants in 10,953 unique reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!