For investigating the molecular physiology and pathophysiology in organs, the most exact data should be obtained; if not, organ-specific cell lines are analyzed, or the whole organ is homogenized, followed by the analysis of its biomolecules. However, if the morphological organization of the organ can be addressed, then, in the best case, the composition of molecules in single cells of the target organ can be analyzed. Laser capture microdissection (LCM) is a technique which enables the selection of specific cells of a tissue for further analysis of their molecules. However, LCM is a time-consuming two-dimensional technique, and optimal results are only obtained if the tissue is fixed, e.g., by formalin. Especially for proteome analysis, formalin fixation reduced the number of identifiable proteins, and this is an additional drawback. Recently, it was demonstrated that sampling of fresh-frozen (non-fixed) tissue with an infrared-laser is giving higher yields with respect to the absolute protein amount and number of identifiable proteins than conventional mechanical homogenization of tissues. In this study, the applicability of the infrared laser tissue sampling for the proteome analysis of different cell layers of murine intestine was investigated, using LC-MS/MS-based differential quantitative bottom-up proteomics. By laser ablation, eight consecutive layers of colon tissue were obtained and analyzed. However, a clear distinguishability of protein profiles between ascending, descending, and transversal colon was made, and we identified the different intestinal-cell-layer proteins, which are cell-specific, as confirmed by data from the Human Protein Atlas. Thus, for the first time, sampling directly from intact fresh-frozen tissue with three-dimensional resolution is giving access to the different proteomes of different cell layers of colon tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181169PMC
http://dx.doi.org/10.3390/ijms23116132DOI Listing

Publication Analysis

Top Keywords

tissue
8
tissue sampling
8
murine intestine
8
proteome analysis
8
number identifiable
8
identifiable proteins
8
cell layers
8
layers colon
8
colon tissue
8
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!