Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n - 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n - 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181499 | PMC |
http://dx.doi.org/10.3390/ijms23116043 | DOI Listing |
Anal Chim Acta
January 2025
Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China. Electronic address:
Background: Small molecule mimics offer the advantages of easy preparation, good thermodynamic stability, and reproducible catalytic activity. However, most of the reported organic artificial mimics face challenges including low catalytic activity, oxidative self-destruction, and auto-aggregation into inactive dimers. Therefore, novel organic mimics with high catalytic activity as well as good thermal and environmental stability are highly desirable.
View Article and Find Full Text PDFArch Microbiol
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
J Biotechnol
November 2024
Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan. Electronic address:
PQQ-dependent aldose sugar dehydrogenase (PQQ-ASD) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PaeASD) has great potential as an element for durable bioelectrodevices owing to its exceptional stability against high temperatures and across a broad pH spectrum. However, its application is constrained by low electric current output of the enzyme-immobilized electrodes, which is attributable to its low catalytic activity. A directed evolutionary approach was performed on PaeASD to improve enzyme activity, resulting in the identification of a PaeASD s24 mutant containing six amino acid substitutions, which exhibited a 16-fold higher specific activity than that of wild type.
View Article and Find Full Text PDFBioelectrochemistry
April 2025
Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China. Electronic address:
This work reported a redox cycling system for the design of electrochemical immunosensors by using pyrroloquinoline quinone (PQQ) to promote the oxidation of tris(2-carboxyethyl)phosphine (TCEP). The consumption of TCEP was monitored with ferrocenium (Fc) as the electroactive probe, which was based on the difference in the solubility of Fc with its reduced format (ferrocene, Fc). Metal-organic framework (MOF) was used as the nanocarrier to load biotinylated recognition antibody and PQQ with recombinant streptavidin as the linker.
View Article and Find Full Text PDFBiol Reprod
November 2024
Reproductive Medicine Center, The First Affiliated Hospital of Ningbo University, Ningbo, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!