Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181372PMC
http://dx.doi.org/10.3390/ijms23116005DOI Listing

Publication Analysis

Top Keywords

telomere length
12
telomere shortening
12
multiwalled carbon
8
carbon nanotubes
8
mesothelial cell
8
cell cycle
8
genes involved
8
mwcnt led
8
telomere
6
cell
5

Similar Publications

Objectives: To examine the association of social connections with blood leukocyte telomere length (LTL) and all-cause mortality in older Costa Ricans.

Methods: Utilizing data from the Costa Rican Longevity and Healthy Aging Study (CRELES), a prospective cohort of 2827 individuals aged 60 and above followed since 2004, we constructed a Social Network Index (SNI) based on marital status, household size, interaction with non-cohabitating adult children, and church attendance. We used linear regression to assess SNI's association with baseline LTL ( = 1113), and Cox proportional-hazard models to examine SNI's relationship with all-cause mortality ( = 2735).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.

View Article and Find Full Text PDF

Biomarkers of ageing (BA) can predict health risks beyond chronological age, but little is known about how marital/living status affects longitudinal changes in BA. We examined the association between marital/living status and BA over time using the-Swedish-Adoption/Twin-Study-of-Aging (SATSA) cohort. Four BAs were analyzed: telomere length (TL) (638 individuals; 1603 measurements), DNAmAge (535 individuals; 1392 measurements), cognition (823 individuals; 3218 measurements), and frailty index (FI) (1828 individuals; 9502 measurements).

View Article and Find Full Text PDF

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!