Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In response to the COVID-19 pandemic, mobile-phone data on population movement became publicly available, including Google Community Mobility Reports (CMR). This study explored the utilization of mobility data to predict COVID-19 dynamics in Jakarta, Indonesia. We acquired aggregated and anonymized mobility data sets from 15 February to 31 December 2020. Three statistical models were explored: Poisson Regression Generalized Linear Model (GLM), Negative Binomial Regression GLM, and Multiple Linear Regression (MLR). Due to multicollinearity, three categories were reduced into one single index using Principal Component Analysis (PCA). Multiple Linear Regression with variable adjustments using PCA was the best-fit model, explaining 52% of COVID-19 cases in Jakarta (R-Square: 0.52; p < 0.05). This study found that different types of mobility were significant predictors for COVID-19 cases and have different levels of impact on COVID-19 dynamics in Jakarta, with the highest observed in “grocery and pharmacy” (4.12%). This study demonstrates the practicality of using CMR data to help policymakers in decision making and policy formulation, especially when there are limited data available, and can be used to improve health system readiness by anticipating case surge, such as in the places with a high potential for transmission risk and during seasonal events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180360 | PMC |
http://dx.doi.org/10.3390/ijerph19116671 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!