Acute myeloid leukemia (AML) is a heterogeneous disease. A significant proportion of AML patients is refractory to clinical treatment or relapses. Our aim is to determine new potential AML clinical treatment prognosis markers. We investigated various cell fate and epigenetic regulation important gene level differences between refractory and responsive AML patient groups at diagnosis stage and after clinical treatment using RT-qPCR. We demonstrated that oncogenic and and metabolic gene expression was significantly higher and cell cycle inhibitor gene expression was significantly lower in refractory patients' bone marrow cells compared to treatment responsive patients both at diagnosis and after clinical treatment. Moreover, we determined that, compared to clinical treatment responsive patients, refractory patients possess a significantly higher gene expression of histone deacetylase 2 () and epigenetic DNA modulator and a significantly lower gene expression of lysine acetyltransferase 6A () and nucleosome remodeling and deacetylase (NuRD) complex component . We suggest that , , , , , , and gene expression changes might characterize refractory AML. Thus, they might be useful for AML prognosis. Additionally, we suggest that epigenetic modulation might be beneficial in combination with standard treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179343 | PMC |
http://dx.doi.org/10.3390/cancers14112752 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.
The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.
View Article and Find Full Text PDFEgypt J Immunol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
The autoimmune disease systemic lupus erythematosus (SLE) is presented with many clinical symptoms. The transcription factor fork head box protein 3 (Foxp3) is expressed on regulatory T (T-reg) cells and essential for its development and function. Functional single-nucleotide polymorphisms (SNPs) in the Foxp3-3279 (rs3761548 C/A) gene influence SLE pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!