Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization.

Cancers (Basel)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.

Published: May 2022

Meningiomas are the most common extra-axial tumors of the central nervous system (CNS). Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists, typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to outcome prediction and risk stratification. The acquisition of this information could help the referring clinician in the decision-making process and selection of the appropriate treatment. Following the increased attention and potential of radiomics and artificial intelligence in the healthcare domain, including oncological imaging, researchers have investigated their use over the years to overcome the current limitations of imaging. The aim of these new tools is the replacement of subjective and, therefore, potentially variable medical image analysis by more objective quantitative data, using computational algorithms. Although radiomics has not yet fully entered clinical practice, its potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179263PMC
http://dx.doi.org/10.3390/cancers14112605DOI Listing

Publication Analysis

Top Keywords

radiomics artificial
8
artificial intelligence
8
imaging
5
meningioma radiomics
4
radiomics nexus
4
nexus imaging
4
imaging pathology
4
pathology biomolecular
4
biomolecular characterization
4
characterization meningiomas
4

Similar Publications

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Objectives: Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Materials And Methods: Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection.

View Article and Find Full Text PDF

Background/objectives: In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images.

View Article and Find Full Text PDF

Objective: This study explores a semi-supervised learning (SSL), pseudo-labeled strategy using diverse datasets such as head and neck cancer (HNCa) to enhance lung cancer (LCa) survival outcome predictions, analyzing handcrafted and deep radiomic features (HRF/DRF) from PET/CT scans with hybrid machine learning systems (HMLSs).

Methods: We collected 199 LCa patients with both PET and CT images, obtained from TCIA and our local database, alongside 408 HNCa PET/CT images from TCIA. We extracted 215 HRFs and 1024 DRFs by PySERA and a 3D autoencoder, respectively, within the ViSERA 1.

View Article and Find Full Text PDF

Artificial Intelligence and Radiomics in Cholangiocarcinoma: A Comprehensive Review.

Diagnostics (Basel)

January 2025

Department of Medical Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Radiology Unit-Sant'Andrea University Hospital, 00189 Rome, Italy.

Cholangiocarcinoma (CCA) is a malignant biliary system tumor and the second most common primary hepatic neoplasm, following hepatocellular carcinoma. CCA still has an extremely high unfavorable prognosis, regardless of type and location, and complete surgical resection remains the only curative therapeutic option; however, due to the underhanded onset and rapid progression of CCA, most patients present with advanced stages at first diagnosis, with only 30 to 60% of CCA patients eligible for surgery. Recent innovations in medical imaging combined with the use of radiomics and artificial intelligence (AI) can lead to improvements in the early detection, characterization, and pre-treatment staging of these tumors, guiding clinicians to make personalized therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!