Mutations in the peroxisomal half-transporter ABCD1 cause X-linked adrenoleukodystrophy, resulting in elevated very long-chain fatty acids (VLCFA), progressive neurodegeneration and an associated pain syndrome that is poorly understood. In the nervous system of mice, we found ABCD1 expression to be highest in dorsal root ganglia (DRG), with satellite glial cells (SGCs) displaying higher expression than neurons. We subsequently examined sensory behavior and DRG pathophysiology in mice deficient in ABCD1 compared to wild-type mice. Beginning at 8 months of age, mice developed persistent mechanical allodynia. DRG had a greater number of IB4-positive nociceptive neurons expressing PIEZO2, the mechanosensitive ion channel. Blocking PIEZO2 partially rescued the mechanical allodynia. Beyond affecting neurons, ABCD1 deficiency impacted SGCs, as demonstrated by high levels of VLCFA, increased glial fibrillary acidic protein (GFAP), as well as genes disrupting neuron-SGC connectivity. These findings suggest that lack of the peroxisomal half-transporter ABCD1 leads to PIEZO2-mediated mechanical allodynia as well as SGC dysfunction. Given the known supportive role of SGCs to neurons, this elucidates a novel mechanism underlying pain in X-linked adrenoleukodystrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180358PMC
http://dx.doi.org/10.3390/cells11111842DOI Listing

Publication Analysis

Top Keywords

mechanical allodynia
16
piezo2-mediated mechanical
8
peroxisomal half-transporter
8
half-transporter abcd1
8
x-linked adrenoleukodystrophy
8
abcd1
5
peroxisome metabolism
4
metabolism contributes
4
contributes piezo2-mediated
4
mechanical
4

Similar Publications

Effect of two novel GABAA receptor positive allosteric modulators on neuropathic and inflammatory pain in mice.

Neuropharmacology

January 2025

Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China. Electronic address:

Loss of GABAergic inhibition in the spinal dorsal horn (SDH) is implicated in central sensitization and chronic pain. Both agonists and positive allosteric modulators (PAMs) of GABAA receptor are found to be effective in the management of chronic pain. In addition to benzodiazepines, neuroactive steroids (NASs) also act as PAMs through binding to unique sites of GABAA receptors.

View Article and Find Full Text PDF

Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management.

View Article and Find Full Text PDF

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!