CFTR Modulators in People with Cystic Fibrosis: Real-World Evidence in France.

Cells

French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.

Published: May 2022

Cystic fibrosis (CF) is a rare genetic multisystemic disease, the manifestations of which are due to mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein and can lead to respiratory insufficiency and premature death. CFTR modulators, which were developed in the past decade, partially restore CFTR protein function. Their clinical efficacy has been demonstrated in phase 3 clinical trials, particularly in terms of lung function and pulmonary exacerbations, nutritional status, and quality of life in people with gating mutations (ivacaftor), homozygous for the F508del mutation (lumacaftor/ivacaftor and tezacaftor/ivacaftor), and in those with at least one F508del mutation (elexacaftor/tezacaftor/ivacaftor). However, many questions remain regarding their long-term safety and effectiveness, particularly in patients with advanced lung disease, liver disease, renal insufficiency, or problematic bacterial colonization. The impact of CFTR modulators on other important outcomes such as concurrent treatments, lung transplantation, chest imaging, or pregnancies also warrants further investigation. The French CF Reference Network includes 47 CF centers that contribute patient data to the comprehensive French CF Registry and have conducted nationwide real-world studies on CFTR modulators. This review seeks to summarize the results of these real-world studies and examine their findings against those of randomized control trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179538PMC
http://dx.doi.org/10.3390/cells11111769DOI Listing

Publication Analysis

Top Keywords

cftr modulators
16
cystic fibrosis
8
cftr protein
8
f508del mutation
8
real-world studies
8
cftr
6
modulators people
4
people cystic
4
fibrosis real-world
4
real-world evidence
4

Similar Publications

What does the expanding CFTR modulator programme mean for people with cystic fibrosis?

Lancet Respir Med

January 2025

University of Liverpool, Institute in the Park, Alder Hey Children's Hospital, Liverpool L12 2AP, UK. Electronic address:

View Article and Find Full Text PDF

Background: Elexacaftor-tezacaftor-ivacaftor (ETI) has significantly improved the clinical course of people with cystic fibrosis (pwCF) and eligible CFTR variants. In this study, we prospectively evaluated liver elastography, liver fibrosis indices and liver tests in children with CF aged 6-12 years started on ETI therapy.

Methods: Body mass index, sweat test, percent predicted forced expiratory volume in one second, serum markers of liver injury or portal hypertension, liver fibrosis indices, controlled attenuation parameter and liver stiffness were assessed before starting ETI and three and twelve months post-ETI, according to new international guidelines.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Learning from the CFTR modulator baby boom.

J Cyst Fibros

January 2025

Division of Pulmonary/Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA; Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, USA.

View Article and Find Full Text PDF

Testing organ-specific responses to therapies in tissues differentiated from Cystic Fibrosis patient derived iPSCs.

Stem Cell Res

January 2025

Programme in Molecular Medicine, Research Institute for SickKids Hospital, Toronto, Canada; Department of Clinical and Experimental Medicine, University of Foggia, Italy. Electronic address:

Cystic Fibrosis (CF) is a life-shortening disease that is caused by mutations in the CFTR gene, a gene that is expressed in multiple organs. There are several primary tissue models of CF disease, including nasal epithelial cultures and rectal organoids, that are effective in reporting the potential efficacy of mutation-targeted therapies called CFTR modulators. However, there is the well-documented variation in tissue dependent, therapeutic response amongst CF patients, even those with the same CF-causing mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!