Wineries produce considerable amounts of grape pomace, which is a readily available natural source of bioactive phenolic compounds. In this study, grape pomace was used as a substrate for the cultivation of eleven filamentous fungi ( TV6, TV8, AG613, , , , , , , , and ) under solid-state conditions (SSF) for 15 days with the aim of improving the recovery of the individual phenolic compounds. Twenty-one phenolic compounds were quantified and the recovery of seventeen of them (gallic acid, ellagic acid, -hydroxybenzoic acid, syringic acid, vanillic acid, 3,4-dihydroxybenzoic acid, ferulic acid, -coumaric acid, -coumaric acid, epicatechin gallate, galocatechin gallate, quercetin, kaempferol, procyanidin B1, procyanidin B2, resveratrol, and ε-viniferin) were positively affected by SSF. Ellagic acid is the most recovered compound, whose content increased 8.8-fold after 15 days of biological treatment with compared to the untreated initial sample. Among the microorganisms tested, the fungi and proved to be the most effective in increasing the recovery of most phenolic compounds (1.1-4.5-fold). In addition, the nutrient composition (proteins, ash, fats) of grape pomace was positively affected by the biological treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180687 | PMC |
http://dx.doi.org/10.3390/foods11111665 | DOI Listing |
Plants (Basel)
December 2024
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Anderss (Salicaceae), commonly referred to as Korean willow, is native to East Asia, particularly Korea and China, and it has been used in traditional Korean folk medicine for its potent anti-inflammatory, analgesic, and antioxidant properties. In our ongoing research efforts to discover biologically new natural products, phytochemical analysis on an ethanolic extract of twigs yielded the isolation and identification of ten phenolic compounds (-), including a newly discovered phenolic glycoside () named isograndidentatin D, isolated via HPLC purification. The structure of compound was determined through extensive 1D and 2D NMR spectral data analysis and high-resolution electrospray ionization mass spectrometry (HR-ESIMS).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy.
The Italian Carciofo di Paestum () PGI, an artichoke variety from the Campania region, was investigated for its potential to reuse by-products for food supplements. EtOH:HO 50:50 and 75:25 extracts of its leaves were analyzed for phenolic and flavonoid content and antioxidant activity (TEAC: 1.90 and 1.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico.
Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
Green propolis, particularly from the unique flora of the Brazilian Caatinga biome, has gained significant interest due to its diverse chemical composition and biological activities. This study focuses on the chemical characterization and antimicrobial evaluation of Caatinga green propolis. Twelve compounds were isolated through different chromatographic techniques, including flavanones (naringenin, 7--methyleriodictyol, sakuranetin), flavones (hispidulin, cirsimaritin), flavonols (quercetin, quercetin-3-methyl ether, kaempferol, 6-methoxykaempferol, viscosine, penduletin), and one chalcone (kukulkanin B).
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Forestry, Northeast Forestry University, Harbin 150040, China.
A. Boriss., recognized for its significant medicinal potential, is increasingly threatened by overharvesting in wild habitats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!