Synergistic Action of Mild Heat and Essential Oil Treatments on Culturability and Viability of ATCC 25922 Tested In Vitro and in Fruit Juice.

Foods

Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.

Published: May 2022

The strengthening effect of a mild temperature treatment on the antimicrobial efficacy of essential oils has been widely reported, often leading to an underestimation or a misinterpretation of the product’s microbial status. In the present study, both a traditional culture-based method and Flow Cytometry (FCM) were applied to monitor the individual or combined effect of Origanum vulgare essential oil (OEO) and mild heat treatment on the culturability and viability of Escherichia coli in a conventional culture medium and in a fruit juice challenge test. The results obtained in the culture medium showed bacterial inactivation with an increasing treatment temperature (55 °C, 60 °C, 65 °C), highlighting an overestimation of the dead population using the culture-based method; in fact, when the FCM method was applied, the prevalence of injured bacterial cells in a viable but non-culturable (VBNC) state was observed. When commercial fruit juice with a pH of 3.8 and buffered at pH 7.0 was inoculated with E. coli ATCC 25922, a bactericidal action of OEO and a higher efficiency of the mild heat at 65 °C for 5′ combined with OEO were found. Overall, the combination of mild heat and OEO treatment represents a promising antimicrobial alternative to improve the safety of fruit juice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180004PMC
http://dx.doi.org/10.3390/foods11111615DOI Listing

Publication Analysis

Top Keywords

mild heat
16
fruit juice
16
essential oil
8
culturability viability
8
atcc 25922
8
culture-based method
8
culture medium
8
°c °c
8
mild
5
synergistic action
4

Similar Publications

Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.

View Article and Find Full Text PDF

In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.

View Article and Find Full Text PDF

A low-temperature ionic liquid system for topochemical synthesis of Si nanospheres for high-performance lithium-ion batteries.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).

View Article and Find Full Text PDF

Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C.

Biochim Biophys Acta Mol Cell Res

January 2025

Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:

Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!