The antifungal activity of cinnamon ( Presl), litsea [ (Lour.) Pers.], clove ( L.), thyme ( Ronn.) and citronella ( Jowitt) essential oils (EOs) against the dominant fungi isolated from moldy peanuts was investigated in this research. Firstly, strain YQM was isolated and identified by morphological characterization and 18S rRNA gene sequence analysis to be (. ). Next, antifungal effects of single or mixed EOs on strain YQM were evaluated by the inhibition zone test. The cinnamon-litsea combined essential oil (CLCEO, V:V = 3:5) displayed the best antifungal effect on strain YQM. The chemical composition of CLCEO was identified and quantified by gas chromatograph-mass spectrometry (GC-MS), and results revealed that the major components of CLCEO were cinnamaldehyde and citral. Finally, the effect of EOs on the microstructure of strain YQM mycelia was observed under scanning electron microscope (SEM). The mycelia exposed to cinnamon essential oil (CEO) and litsea essential oil (LEO) were partly deformed and collapsed, while the mycelia treated with CLCEO were seriously damaged and the deformation phenomena such as shrinking, shriveling and sinking occurred. Therefore, CLCEO has great potential for using as anti-mildew agents during peanut storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180872PMC
http://dx.doi.org/10.3390/foods11111586DOI Listing

Publication Analysis

Top Keywords

essential oil
16
strain yqm
16
antifungal activity
8
cinnamon-litsea combined
8
combined essential
8
essential
5
clceo
5
antifungal
4
activity cinnamon-litsea
4
oil
4

Similar Publications

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

This study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.

View Article and Find Full Text PDF

Essential oils application as natural preservatives is challenging owning to low solubility and stability to harsh conditions, while incorporation of essential oils into nanoemulsion systems can effectively improve these issues. Therefore, the nanoemulsion of () and cardamom essential oils were fabricated through self-emulsification technique and evaluated their size, ζ-potential, antioxidative and antibacterial activities. The effect of double nanomulsion on the textural and sensorial properties of Mortadella sausage was also examined under chilling temperature (4 °C).

View Article and Find Full Text PDF

Leaf essential oils (EOs) of seven Eucalyptus species from southern Tunisia (E. gracilis, E. lesouefii, E.

View Article and Find Full Text PDF

The Hammam Faraun, Matulla, and Nubia formations in the Ashrafi oil field, in the southern Gulf of Suez, Egypt, are key hydrocarbon reservoirs with significant economic importance. These formations, characterized by their favorable reservoir properties and structural settings, play a crucial role in oil and gas accumulation. Their study provides valuable insights into regional petroleum systems and guides exploration and production activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!