In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle size, distribution, and rheological properties of the miscible systems were evaluated. Under acidic conditions, the miscible systems of four polysaccharides and gelatin were in a clear state; under alkaline conditions, G-HBSS and G-CHSS were clarified, and G-DASS and G-CASS changed from clarification to turbidity. The zeta potential changed from positive to negative with the increase in pH. When the pH was at 7, it increased with the increase in polysaccharide concentration but was still negative. The four miscible systems all showed polydispersity. The particle sizes of G-HBSS and G-CHSS decreased with the increase in pH, while the particle sizes of G-DASS and G-CASS were increased. The four miscible systems showed "shear thinning" behavior, and the addition of gelatin reduced the apparent viscosity of the four polysaccharide solutions. G-CHSS was highly stable, and G-CASS was more suitable as a stabilizer in the freezing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180381PMC
http://dx.doi.org/10.3390/foods11111571DOI Listing

Publication Analysis

Top Keywords

miscible systems
16
gelatin mulberry
8
mulberry leaf
8
leaf polysaccharides
8
miscible system
8
zeta potential
8
g-hbss g-chss
8
g-dass g-cass
8
particle sizes
8
miscible
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!