Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network.

Nat Commun

Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.

Published: June 2022

Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184492PMC
http://dx.doi.org/10.1038/s41467-022-30844-0DOI Listing

Publication Analysis

Top Keywords

cerebellar stimulation
20
levodopa-induced dyskinesia
8
motor network
8
lid
8
lid alleviation
8
cerebellar
6
stimulation prevents
4
prevents levodopa-induced
4
dyskinesia mice
4
mice normalizes
4

Similar Publications

Characteristics of Cognitive Event-Related Potential Components and N170 Source Analysis in Patients with Acute Cerebellar Infarction.

Cerebellum

January 2025

Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.

This study aims to evaluate cognitive impairments in patients with acute cerebellar infarction using event-related potentials (ERP) and electrophysiological source imaging (ESI). Thirty patients with acute cerebellar infarction and 32 healthy volunteers were selected. Cognitive potentials were recorded and measured using a visual Oddball paradigm.

View Article and Find Full Text PDF

Background: The study of the involvement of the cerebellum in learning and memory has become one of the recent hot topics in the field of cognitive neuroscience. Transcranial magnetic stimulation (TMS) of the cerebellum has gained increasing interest in the treatment of cognition-related disorders, making it necessary to determine the optimal parameters for cerebellar TMS. In this study, we aim to explore the effects of different frequencies of cerebellar repetitive TMS (rTMS) on working memory regulation and the associated electrophysiological changes.

View Article and Find Full Text PDF

Late onset cerebellar ataxia syndrome after non-paraneoplastic Lambert-Eaton myasthenic syndrome: a case study.

BMC Neurol

January 2025

Neuromuscular Neurology, Advocate Health, 1850 Dempster Street, Park Ridge, IL, 60068, USA.

This is an unusual case of voltage gated calcium channel (VGCC) antibodies leading to two distinct and chronologically separated neurologic syndromes without the presence of an underlying neoplasm. Lambert Eaton Myasthenic Syndrome (LEMS) presented five years prior to cerebellar ataxia. Both LEMS and cerebellar ataxia were responsive to treatment, but not the same therapy.

View Article and Find Full Text PDF

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Article Synopsis
  • ctACS may offer a non-invasive treatment avenue for psychiatric and neurological disorders, but its effectiveness is limited by a lack of understanding of its impact on cerebellar activity at cellular levels.
  • Previous research indicated that AC stimulation influenced Purkinje cell (PC) and cerebellar nuclear (CN) cell activity in a frequency-dependent manner when applied to the cerebellum.
  • This study found that ctACS altered PC and CN activity in rats, revealing that the modulation patterns varied with stimulus frequency and electrode placement, indicating potential for targeted treatment strategies.
View Article and Find Full Text PDF

As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!